scholarly journals Extreme precipitation events in the Mediterranean area: contrasting two different models for moisture source identification

2021 ◽  
Vol 25 (12) ◽  
pp. 6465-6477
Author(s):  
Sara Cloux ◽  
Daniel Garaboa-Paz ◽  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
Vicente Pérez-Muñuzuri

Abstract. Concern about heavy precipitation events has increasingly grown in the last years in southern Europe, especially in the Mediterranean region. These occasional episodes can result in more than 200 mm of rainfall in less than 24 h, producing flash floods with very high social and economic losses. To better understand these phenomena, a correct identification of the origin of moisture must be found. However, the contribution of the different sources is very difficult to estimate from observational data; thus numerical models are usually employed to this end. Here, we present a comparison between two methodologies for the quantification of the moisture sources in two flooding episodes that occurred during October and November 1982 in the western Mediterranean area. A previous study, using the online Eulerian Weather Research and Forecasting (WRF) Model with water vapor tracer (WRF-WVT) model, determined the contributions to precipitation from moisture evaporated over four different sources: (1) the western Mediterranean, (2) the central Mediterranean, (3) the North Atlantic Ocean and (4) the tropical and subtropical Atlantic and tropical Africa. In this work we use the offline Lagrangian FLEXPART-WRF model to quantify the role played by these same sources. Considering the results provided by WRF-WVT as “ground truth”, we validated the performance of the FLEXPART-WRF. Results show that this Lagrangian method has an acceptable skill in identifying local (western Mediterranean) and medium-distance (central Mediterranean and North Atlantic) sources. However, remote moisture sources, like tropical and subtropical areas, are underestimated by it. Notably, for the October event, the tropical and subtropical area reported a relative contribution 6 times lower than with the WRF-WVT. In contrast, FLEXPART-WRF overestimates the contribution of some sources, especially from North Africa. These over- and underestimates should be taken into account by other authors when drawing conclusions from this widely used Lagrangian offline analysis.

2021 ◽  
Author(s):  
Sara Cloux ◽  
Daniel Garaboa-Paz ◽  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
Vicente Pérez-Muñuzuri

Abstract. Concern about heavy precipitation events has increasingly grown in the last years in Southern Europe, especially in the Mediterranean region. These occasional episodes can result in more than 200 mm of rainfall in less than 24 h, producing flash floods with very high social and economic losses. To the better understanding of this phenomena, a correct identification of the origin of the moisture must be found. However, the contribution of the different sources is very difficult to estimate from observational data, so numerical models are usually used to this end. Here, we present a comparison between two complex methodologies for the quantification of the moisture sources in two infamous events occurred during October and November 1982 in the Western Mediterranean area. In a previous study, using an Eulerian approach it was determined the contributions of moisture evaporated in: 1) Western Mediterranean; 2) Central Mediterranean; 3) North Atlantic ocean and 4) tropical and subtropical Atlantic and tropical Africa. Now, we use the Lagrangian model FLEXPART-WRF to quantify the role played by these sources. Considering the results provided by the Eulerian analysis as the virtual reality, we validated the performance of the Lagrangian model. Results show that the Lagrangian method has an acceptable performance in identifying local (Western Mediterranean) and medium-distance (Central Mediterranean and North Atlantic) sources. However, remote moisture sources, like tropical and subtropical areas, are underestimated by the Lagrangian approach. Notably, for the October event, the tropical and subtropical area reported a relative contribution six times below than the Eulerian method. In contrast, the FLEXPART-WRF overestimates the contribution of some sources, especially from the Sahara. We argue that such an inconsistent contribution is associated with the fact that the Lagrangian method does not consider moisture phase changes. These overand underestimates should be taken into account by other authors when drawing conclusions from the Lagrangian analysis.


2018 ◽  
Author(s):  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
María Carmen Llasat

Abstract. Floods and flash floods are frequent in the South of Europe resulting from heavy rainfall events that often produce more than 200 mm in less than 24 h. Even though the meteorological conditions favorable for these situations have been widely studied, there is a lingering question that still arises: which are the sources of humidity that could explain so much precipitation? To answer this question, the regional atmospheric Weather Research and Forecasting (WRF) Model with a recently implemented moisture tagging capability has been used to analyze the main moisture sources in two famous flood events occurred during the autumn of 1982 (October and November) in the Western Mediterranean area, which is regularly affected by this type of adverse weather episodes. The procedure consists in selecting a priori potential moisture source regions for the considered extreme event, and then performing simulations with the tagging technique to quantify the relative contribution of each selected source to total precipitation. For these events we study the influence of four possible potential sources: 1) evaporation in the Western Mediterranean; 2) evaporation in the Central Mediterranean; 3) evaporation in the North Atlantic; 4) advection from the tropical and subtropical Atlantic and Africa. Results show that these four moisture sources explain most of the accumulated precipitation, with the tropical and subtropical input being the most relevant in both cases. In the October event, evaporation in the Western and Central Mediterranean and in the North Atlantic also had an important contribution. In the November episode, however, tropical and subtropical moisture accounted for more than half of the total accumulated rainfall, while evaporation in the Western Mediterranean and North Atlantic played a secondary role and the contribution of the Central Mediterranean was almost negligible. Remote sources were therefore crucial: in the October event they played a similar role to local sources while in the November case they were clearly dominant. In both episodes, long distance moisture transport from the tropics and subtropics occurred mostly in mid tropospheric layers, through well-defined moisture plumes with maximum mixing ratios at medium levels.


2019 ◽  
Vol 23 (9) ◽  
pp. 3885-3900 ◽  
Author(s):  
Damián Insua-Costa ◽  
Gonzalo Miguez-Macho ◽  
María Carmen Llasat

Abstract. Floods and flash floods are frequent in the south of Europe resulting from heavy rainfall events that often produce more than 200 mm in less than 24 h. Even though the meteorological conditions favourable for these situations have been widely studied, there is a lingering question that still arises: what humidity sources could explain so much precipitation? To answer this question, the regional atmospheric Weather Research and Forecasting (WRF) model with a recently implemented moisture tagging capability has been used to analyse the main moisture sources for two catastrophic flood events that occurred during the autumn of 1982 (October and November) in the western Mediterranean area, which is regularly affected by these types of adverse weather episodes. The procedure consists in selecting a priori potential moisture source regions for the extreme event under consideration, and then performing simulations using the tagging technique to quantify the relative contribution of each selected source to total precipitation. For these events we study the influence of four possible potential sources: (1) evaporation in the western Mediterranean; (2) evaporation in the central Mediterranean; (3) evaporation in the North Atlantic; and (4) advection from the tropical and subtropical Atlantic and Africa. Results show that these four moisture sources explain most of the accumulated precipitation, with the tropical and subtropical input being the most relevant in both cases. In the October event, evaporation in the western and central Mediterranean and in the North Atlantic also had an important contribution. However, in the November episode tropical and subtropical moisture accounted for more than half of the total accumulated rainfall, while evaporation in the western Mediterranean and North Atlantic played a secondary role and the contribution of the central Mediterranean was almost negligible. Therefore, remote sources were crucial: in the October event they played a similar role to local sources, whereas in the November case they were clearly dominant. In both episodes, long-distance moisture transport from the tropics and subtropics mostly occurred in mid-tropospheric layers, via well-defined moisture plumes with maximum mixing ratios at medium levels.


2016 ◽  
Author(s):  
Umberto Rizza ◽  
Francesca Barnaba ◽  
Mario Marcello Miglietta ◽  
Gian Paolo Gobbi ◽  
Cristina Mangia ◽  
...  

Abstract. In this study, the Weather Research and Forecasting (WRF) Model with online coupled chemistry (WRF-Chem) is applied to simulate an intense Saharan dust outbreak event that took place over the Mediterranean in May 2014. The dust outbreak was generated in correspondence with an omega-like pressure configuration associated with a cyclogenesis in the Atlantic coasts of Spain. This pattern has been recognized as one of the three major cyclogenesis situations responsible for the transport of Saharan dust towards the Central and Western Mediterranean. In fact, in the case investigated here, a cyclone near the Atlantic coasts of Spain is responsible for strong westerly Atlantic winds (about 20 m s−1) reaching the northern Sahara and leading to the lifting of mineral dust. The northward transport is made possible by a ridge over the central Mediterranean associated with the omega-like pressure configuration. WRF-Chem simulations are able to reproduce the synoptic meteorological conditions and the transport outline of the dust outbreak that was in fact characterized by multiple, superimposed dust impulses. The model performances in reproducing the atmospheric desert dust load were evaluated using a multi-platform observational dataset of aerosol and desert dust properties, including optical properties from satellite and ground-based sun-photometers and lidars, plus in situ PM10 data. This comparison allowed us to investigate the model ability in reproducing both the horizontal and the vertical displacement of the dust plume, and its evolution in time. Results show a good agreement between the model and the AERONET-AOD in six sites in the Mediterranean. Comparison with the MODIS-AOD retrieval shows that WRF-Chem satisfactorily resolves the arrival, the time evolution and the horizontal pattern of the dust storm over Central Mediterranean. Comparison with lidar data confirms the desert dust advection to occur in several, superimposed ‘pulses’, as simulated by the model. In most cases the desert dust is shown to arrive above the PBL and then to descend and mix with the local aerosols within it. The vertical displacement of the dust was in good agreement with the lidar soundings with a mean discrepancy along the aerosol extinction of about 40–60 %. The model-measurements comparison for the PM10 and PM2.5 shows a good temporal matching, although there is a clear overestimation of PM10 and PM2.5, of the order of 70 % during the dust peak. This tendency is reduced or even inverted in weak-dust or no-dust conditions, in which model and measured PM10 and PM2.5 are within 30 % and 10–60 %, respectively. For the PM10 metrics it was also possible to investigate the accordance between the model-based and the measurements-based dust-PM10. This comparison confirmed the PM10 model overestimation to be related to over-predicted dust mass by a factor of 140 %.


2013 ◽  
Vol 9 (5) ◽  
pp. 2043-2071 ◽  
Author(s):  
M. Magny ◽  
N. Combourieu-Nebout ◽  
J. L. de Beaulieu ◽  
V. Bout-Roumazeilles ◽  
D. Colombaroli ◽  
...  

Abstract. On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the eastern, but also in the central- and the western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice sheet disappeared and a prevailing positive NAO-(North Atlantic Oscillation) type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease in insolation, with additional key seasonal and interhemispheric changes. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial timescales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age); and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients). Finally, on the basis of projects using strategically located study sites, there is a need to explore possible influences of other general atmospheric circulation patterns than NAO, such as the East Atlantic–West Russian or North Sea–Caspian patterns, in explaining the apparent complexity of palaeoclimatic (palaeohydrological) Holocene records from the Mediterranean area.


2021 ◽  
Author(s):  
Damián Insua Costa ◽  
Gonzalo Miguez-Macho ◽  
María Carmen Llasat

<p>The Western Mediterranean region (WMR) is usually affected by heavy rainfall, which has been extensively studied in the past because of the enormous impact it causes. However, there is still an open question related to these potentially catastrophic episodes: does the water vapour that feeds precipitation actually come from the Mediterranean Sea? Several studies have pointed to a significant contribution from other moisture sources, but the debate remains open because only a few case studies with disparate findings have been analysed so far. Here we use the Weather Research and Forecasting (WRF) model with a coupled moisture tagging capability to simulate over one hundred cases of extreme precipitation in the WMR. In order to detect possible remote moisture sources, we use a domain that covers almost the entire northern hemisphere. Preliminary results show that, although the contribution from the Mediterranean Sea is crucial, the combined contribution from more distant sources in the tropical, subtropical and north Atlantic is higher on average. In some specific cases, a significant part of the humidity may come from sources as far away as the Pacific Ocean. Our findings suggest that when explaining WMR torrential rainfall episodes, the Mediterranean Sea should be generally understood as a precipitation enhancer rather than the main contributor to precipitation.</p>


2013 ◽  
Vol 9 (2) ◽  
pp. 1901-1967 ◽  
Author(s):  
M. Magny ◽  
N. Combourieu Nebout ◽  
J. L. de Beaulieu ◽  
V. Bout-Roumazeilles ◽  
D. Colombaroli ◽  
...  

Abstract. On the basis of a multi-proxy approach and a strategy combining lacustrine and marine records along a north–south transect, data collected in the Central Mediterranean within the framework of a collaborative project have led to reconstruction of high-resolution and well-dated palaeohydrological records and to assessment of their spatial and temporal coherency. Contrasting patterns of palaeohydrological changes have been evidenced in the Central Mediterranean: south (north) of around 40° N of latitude, the middle part of the Holocene was characterised by lake-level maxima (minima), during an interval dated to ca. 10 300–4500 cal BP to the south and 9000–4500 cal BP to the north. Available data suggest that these contrasting palaeohydrological patterns operated throughout the Holocene, both on millennial and centennial scales. Regarding precipitation seasonality, maximum humidity in the Central Mediterranean during the middle part of the Holocene was characterised by humid winters and dry summers north of ca. 40° N, and humid winters and summers south of ca. 40° N. This may explain an apparent conflict between palaeoclimatic records depending on the proxies used for reconstruction as well as the synchronous expansion of tree species taxa with contrasting climatic requirements. In addition, south of ca. 40° N, the first millennium of the Holocene was characterised by very dry climatic conditions not only in the Eastern, but also in the Central and the Western Mediterranean zones as reflected by low lake levels and delayed reforestation. These results suggest that, in addition to the influence of the Nile discharge reinforced by the African monsoon, the deposition of Sapropel 1 has been favoured (1) by an increase in winter precipitation in the northern Mediterranean borderlands, and (2) by an increase in winter and summer precipitation in the southern Mediterranean area. The climate reversal following the Holocene climate optimum appears to have been punctuated by two major climate changes around 7500 and 4500 cal BP. In the Central Mediterranean, the Holocene palaeohydrological changes developed in response to a combination of orbital, ice-sheet and solar forcing factors. The maximum humidity interval in the south-central Mediterranean started at ca. 10 300 cal BP, in correlation with the decline (1) of the possible blocking effects of the North Atlantic anticyclone linked to maximum insolation, and/or (2) of the influence of the remnant ice sheets and fresh water forcing in the North Atlantic Ocean. In the north-central Mediterranean, the lake-level minimum interval began only around 9000 cal BP when the Fennoscandian ice-sheet disappeared and a prevailing positive NAO-type circulation developed in the North Atlantic area. The major palaeohydrological oscillation around 4500–4000 cal BP may be a non-linear response to the gradual decrease, with additional key seasonal and interhemispherical changes, in insolation. On a centennial scale, the successive climatic events which punctuated the entire Holocene in the central Mediterranean coincided with cooling events associated with deglacial outbursts in the North Atlantic area and decreases in solar activity during the interval 11 700–7000 cal BP, and to a possible combination of NAO-type circulation and solar forcing since ca. 7000 cal BP onwards. Thus, regarding the centennial-scale climatic oscillations, the Mediterranean Basin appears to have been strongly linked to the North Atlantic area and affected by solar activity over the entire Holocene. In addition to model experiments, a better understanding of forcing factors and past atmospheric circulation patterns behind the Holocene palaeohydrological changes in the Mediterranean area will require further investigation to establish additional high-resolution and well-dated records in selected locations around the Mediterranean Basin and in adjacent regions. Special attention should be paid to greater precision in the reconstruction, on millennial and centennial time scales, of changes in the latitudinal location of the limit between the northern and southern palaeohydrological Mediterranean sectors, depending on (1) the intensity and/or characteristics of climatic periods/oscillations (e.g. Holocene thermal maximum versus Neoglacial, as well as, for instance, the 8.2 ka event versus the 4 ka event or the Little Ice Age), and (2) on varying geographical conditions from the western to the eastern Mediterranean areas (longitudinal gradients).


2020 ◽  
Author(s):  
Sara Cloux González ◽  
A. Daniel Garaboa Paz ◽  
Damian Insua Costa ◽  
Vicente Perez Muñuzuri ◽  
Gonzálo Miguez Macho

<div> <p>Concern about heavy precipitation events has increasingly grown in the last years in the South of Europe, especially in the Mediterranean region. These occasional episodes can result in more than 200 mm of rainfall in less than 24 h, producing flash floods with very high social and economic losses.  </p> </div><div> <p>To improve their predictability, the correct identification of the origin of the moisture must be done. The Eulerian and Lagrangian models provide a good approach to detect moisture sources. However, they show some limitations. </p> </div><div> <p>Here, we present a comparison between both methods through a case study of an extreme precipitation event on the region of the Mediterranean coast which take place in 1982. Using the Lagrangian model FLEXPART-WRF to backtrack the moisture, we identify the evaporation sources. Then, we compare it with the results obtained through Eulerian WRF-WVT method [1]. Also, we evaluate the accuracy of E-P balance in contrast to Evaporation patterns. Finally, we implemented a further identification of moisture uptake method which enables us to directly compare results from both strategies [2]. </p> </div><div> <p> </p> </div><div> <p>[1] Insua-Costa, D., Miguez-Macho, G., and Llasat, M. C.: Local and remote moisture sources for extreme precipitation: a study of the two catastrophic 1982 western Mediterranean episodes, Hydrol. Earth Syst. Sci., 23, 3885–3900, https://doi.org/10.5194/hess-23-3885-2019, 2019. </p> </div><div> <p>[2] Sodemann, Harald, C. Schwierz, and Heini Wernli.: Interannual variability of Greenland winter precipitation sources: Lagrangian moisture diagnostic and North Atlantic Oscillation influence. Journal of Geophysical Research: Atmospheres 113.D3 (2008). </p> </div>


Plants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 678
Author(s):  
Kamel Atrouz ◽  
Ratiba Bousba ◽  
Francesco Paolo Marra ◽  
Annalisa Marchese ◽  
Francesca Luisa Conforti ◽  
...  

Olive tree with its main final product, olive oil, is an important element of Mediterranean history, considered the emblematic fruit of a civilization. Despite its wide diffusion and economic and cultural importance, its evolutionary and phylogenetic history is still difficult to clarify. As part of the Mediterranean basin, Algeria was indicated as a secondary diversification center. However, genetic characterization studies from Maghreb area, are currently underrepresented. In this context, we characterized 119 endemic Algerian accessions by using 12 microsatellite markers with the main goal to evaluate the genetic diversity and population structure. In order to provide new insights about the history of olive diversification events in the Central-Western Mediterranean basin, we included and analyzed a sample of 103 Italian accessions from Sicily and, a set of molecular profiles of cultivars from the Central-Western Mediterranean area. The phylogenetic investigation let us to evaluate genetic relationships among Central-Mediterranean basin olive germplasm, highlight new synonymy cases to support the importance of vegetative propagation in the cultivated olive diffusion and consolidate the hypothesis of more recent admixture events occurrence. This work provided new information about Algerian germplasm biodiversity and contributed to clarify olive diversification process.


2012 ◽  
Vol 12 (10) ◽  
pp. 28195-28235 ◽  
Author(s):  
J. Pey ◽  
X. Querol ◽  
A. Alastuey ◽  
F. Forastiere ◽  
M. Stafoggia

Abstract. The occurrence of African dust outbreaks over the whole Mediterranean Basin has been identified on an 11-yr period (2001–2011). In order to evaluate the impact of such mineral dust outbreaks on ambient concentrations of particulate matter, PM10 data from regional and suburban background sites across the Mediterranean area were compiled. After identifying the daily influence of African dust, a methodology for estimating natural dust contributions on daily PM10 concentrations was applied. Our results reveal that African dust outbreaks occur with much higher frequency in southern areas of the Mediterranean, from 30 to 37% of the annual days, whereas they take place less than 20% of the annual days in northern sites. The central Mediterranean emerges as a transitional area, with slightly higher frequency of dust episodes in its lower extreme when compared to equivalent areas in western and eastern sides of the Basin. A decreasing south to north gradient of African dust contribution to PM10 is patent across the Mediterranean. Our study demonstrates that this gradient may be mainly explained by the latitudinal position. A longitudinal increasing trend of African dust contribution to PM10 is also observed from 25° E eastwards, and is due to the annual occurrence of intense dust episodes. Thus, the slightly higher frequency of African dust episodes over the lower part of Central Mediterranean is compensated by its moderately lower intensity. Concerning seasonality patterns and intensity characteristics, a clear summer prevalence is observed in the western part, with low occurrence of severe episodes (daily dust averages over 100 μg m−3 in PM10); no seasonal trend is detected in the central region, with moderate-intensity episodes; and significantly higher contributions are common in autumn-spring in the eastern side, with yearly occurrence of various severe episodes. Overall, African dust emerges as the largest PM10 source in regional background southern areas of the Mediterranean (35–50% of PM10), with seasonal peak contributions to PM10 up to 80% of the total mass. The multi-year study of African dust episodes and their contributions to PM10 concentrations allowed us to identify a consistent decreasing trend in the period 2006/2007 to 2011 in 4 of the 17 studied regions, all of them located in the NW of the Mediterranean. The observed trend is almost parallel to the NAO (North Atlantic Oscillation) index for the summer period, progressively more negative since 2006 onwards. As a consequence, a sharp change in the atmospheric circulation over the last 5 yr (a similar negative NAO period occurred in the 1950 decade) have affected the number of African dust episodes and their mean contribution to PM10 in the NW part of the Mediterranean. The investigation of summer temperatures at 850 hPa suggest that warm air accomplishing African dust air masses moved anomalously through the central Mediterranean in the 2007–2008 period, whereas it was displaced atypically to the NW African coast and the Canary Islands in the 2009–2011 period.


Sign in / Sign up

Export Citation Format

Share Document