scholarly journals Riverine water inflows and the Baltic Sea water volume 1901-1990

2000 ◽  
Vol 4 (1) ◽  
pp. 1-11 ◽  
Author(s):  
J. Cyberski ◽  
A. Wróblewski ◽  
J. Stewart

Abstract. An analysis of riverine outflow into the Baltic Sea is presented for the years 1901 – 1990. The monthly outflows were calculated from the measurements in a number of representative rivers. The analysis included estimation of seasonal and multi-year characteristics of riverine outflows and periodic structure, as well as stochastic and statistical indicators characterising the influence of riverine water on the variability of the sea level and water volume in the basin. The article presents prognostic characteristics determined using analysis of parametric stochastic processes. The results obtained are related to oceanographic characteristics of the Baltic Sea. Keywords: Baltic volume; Baltic balance; river outflow; river seasonality

2020 ◽  
Author(s):  
Jani Särkkä ◽  
Jani Räihä ◽  
Matti Kämäräinen ◽  
Kirsti Jylhä

<p>Coastal areas are under rapid changes. Management to face flooding hazards in changing climate is of great significance due to the major impact of flooding events in densely populated coastal regions, where also important and vulnerable infrastructure is located. The sea level of the Baltic Sea is affected by internal fluctuations caused by wind, air pressure and seiche oscillations, and by variations of the water volume due to the water exchange between the Baltic Sea and the North Sea through the Danish Straits. The highest sea level extremes are caused by cyclones moving over the region. The most vulnerable locations are at the ends of the bays. St. Petersburg, located at the eastern end of the Gulf of Finland, has experienced major sea floods in 1777, 1824 and 1924.</p><p>In order to study the effects of the depths and tracks of cyclones on the extreme sea levels, we have developed a method to generate cyclones for numerical sea level studies. A cyclone is modelled as a two-dimensional Gaussian function with adjustable horizontal size and depth. The cyclone moves through the Baltic Sea region with given direction and velocity. The output of this method is the gridded data set of mean sea level pressure and wind components which are used as an input for the sea level model. The internal variations of the Baltic Sea are calculated with a numerical barotropic sea level model, and the water volume variations are evaluated using a statistical sea level model based on wind speeds near the Danish Straits. The sea level model simulations allow us to study extremely rare but physically plausible sea level events that have not occurred during the observation period at the Baltic Sea coast. The simulation results are used to investigate extreme sea levels that could occur at selected sites at the Finnish coastline.</p>


1973 ◽  
Vol 4 (1) ◽  
pp. 41-53 ◽  
Author(s):  
EUGENIE LISITZIN

An attempt is made to compute the sea level variations in the Gulf of Bothnia, which is isolated by islands and thresholds from the Baltic Sea proper. Observations from tide gauges during the 30-year period 1931–1960 were used. The effect of land uplift was taken into consideration. The maximum annual deviation in water volume from the long-term mean corresponded to 20.74 km3..


Author(s):  
Vladimir Chechko ◽  
Vladimir Chechko ◽  
Boris Chubarenko ◽  
Boris Chubarenko

Vistula Lagoon is the second largest lagoon in the Baltic Sea with maximum depth 5.2 m and average depth 2.7 m. Water volume and area are 2.3 km3 and 838 km2. Lagoon is connected with the Baltic Sea by single inlet 400 m wide and 10-12 m deep. Sediment budget estimation were made using literature sources, results of field measurements (hydrology, suspended sediment content, upper layer sediment structure, direct measurements of sedimentation in summer and winter conditions). The budget for terrigene and biogenic components of sediments were made, considering their contributions from the rivers, inflow from the Baltic Sea, coastal erosion and aerial flux, biological production within the lagoon, totally - ca. 730 thousands ton per year. Nearly half of total gain is washed out (105 and 244 thousands ton per year of terrigene and biogenic components), another half is dissolved and mineralized (biogenic component), and only 10% is deposited on the bottom, resulting in rather low sedimentation rate - 0.4 mm/year during last 100 years. Paper explain the reason of difference with estimation made in (Chubarenko&Chubarenko, 2002) and concludes that the clarification of estimates of the amounts of sediments transported from the lagoon to the Baltic Sea is a critical element for understanding the evolution of the Vistula Lagoon as a sedimentation system.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 317
Author(s):  
Darius Danusevičius ◽  
Jurata Buchovska ◽  
Vladas Žulkus ◽  
Linas Daugnora ◽  
Algirdas Girininkas

We aimed to extract DNA and amplify PCR fragments at the mitochondrial DNA Nad7.1 locus and 11 nuclear microsatellite loci in nine circa 11,000-year-old individuals of Scots pine found at the bottom of the Baltic sea and test the genetic associations with the present-day gene pool of Scots pine in Lithuania. We followed a strict anticontamination protocol in the lab and, simultaneously with the aDNA specimens, tested DNA-free controls. The DNA was extracted by an ATMAB protocol from the ancient wood specimens sampled underwater from Scots pine stumps located circa 20–30 m deep and circa 12 km ashore in western Lithuania. As the references, we used 30 present-day Lithuanian populations of Scots pine with 25–50 individuals each. The aDNA yield was 11–41 ng/μL. The PCR amplification for the mtDNA Nad7.1 locus and the nDNA loci yielded reliable aDNA fragments for three and seven out of nine ancient pines, respectively. The electrophoresis profiles of all the PCR tested DNA-free controls contained the sizing standard only, indicating low likelihood for contamination. At the mtDNA Nad7.1 locus, all three ancient Scots pine individuals had the type A (300 bp) allele, indicating postglacial migration from the refugia in Balkan peninsula. The GENECLASS Bayesian assignment tests revealed relatively stringer and consistent genetic associations between the ancient Scots pine trees and the present-day southern Lithuanian populations (assignment probability 0.37–0.55) and several wetlands in Lithuania. Our study shows that salty sea water efficiently preserves ancient DNA in wood at the quality levels suitable for genetic testing of trees dated back as far as 11,000 years before present.


2021 ◽  
Vol 266 ◽  
pp. 107071
Author(s):  
Alar Rosentau ◽  
Volker Klemann ◽  
Ole Bennike ◽  
Holger Steffen ◽  
Jasmin Wehr ◽  
...  

2021 ◽  
Vol 8 ◽  
Author(s):  
Vilnis Frishfelds ◽  
Juris Sennikovs ◽  
Uldis Bethers ◽  
Jens Murawski ◽  
Andrejs Timuhins

This study investigates a water transport features by extending Copernicus Marine Environment Service (CMEMS) to the Liepaja coast-port-channel-lake system with a two-way nested model. The Liepaja lake and Liepaja port are connected by Trade channel. The Liepaja port has three gates—the openings in wave breakers connecting the port aquatory with the Baltic sea. Each of gates has a corresponding dredged channel for securing the navigation. A hydrodynamic model is set up to study the flow and water level in this system. The area of the port gates, port and Trade channel are resolved by 33 m grid. The model results are verified against currents and sea level observations inside/outside port, Trade channel and Liepaja lake. Results and observations show that strong currents occur in the Trade channel in case of rapid sea level change in Baltic sea despite the Trade channel is rather shallow at the connection with Liepaja lake. The northern part of the Liepaja lake gets filled with brackish water during storm surge events. The channel has notable alternating current also during a relatively calm weather due to the port seiches. Long and narrow shape of the channel implies the Helmholtz type oscillations between the lake and the port with a period in approximately semidiurnal range. Hydrodynamic simulations describe well these oscillations but the phase of hourly scale oscillations in the port may differ in case of weak external forcing. Water exchange is significantly increased by the transit (gate to gate) sea currents. This transit flow usually occurs between South or Central gate and the North gate carrying sea water into the port. Northward flow of the surface layer is more characteristic in the port aquatory due the prevailing south-western winds. There are intense morphological processes at the coastline and underwater slope near the Liepaja port due to a sandy western coastline of Latvia, long fetch of the waves and strong currents at the port gates. Liepaja port is one of the Latvian ports in HywasPort operational service of hydrodynamics, waves and siltation.


2016 ◽  
Author(s):  
Karin Ebert ◽  
Karin Ekstedt ◽  
Jerker Jarsjö

Abstract. Future sea level rise as a consequence of global warming will affect the world's coastal regions. Even though the pace of sea level rise is not clear, the consequences will be severe and global. Commonly the effects of future sea level rise are investigated for relatively vulnerable development countries; however, a whole range of varying regions need to be considered in order to improve the understanding of global consequences. In this paper we investigate consequences of future sea level rise along the coast of the Baltic Sea island of Gotland, Sweden, with the aim to fill knowledge gaps regarding comparatively well-suited areas in non-development countries. We study both the quantity of loss of infrastructure, cultural and natural values for the case of a two metre sea level rise of the Baltic Sea, and the effects of climate change on seawater intrusion in coastal aquifers, causing the indirect effect of salt water intrusion in wells. We conduct a multi-criteria risk analysis by using Lidar data on land elevation and GIS-vulnerability mapping, which gives formerly unimaginable precision in the application of distance and elevation parameters. We find that in case of a 2 m sea level rise, 3 % of the land area of Gotland, corresponding to 99 km2, will be inundated. The features most strongly affected are items of touristic or nature values, including camping places, shore meadows, sea stack areas, and endangered plants and species habitats. In total, 231 out of 7354 wells will be directly inundated, and the number of wells in the high-risk zone for saltwater intrusion in wells will increase considerably. Some values will be irreversibly lost due to e.g. inundation of sea stacks and the passing of tipping points for sea water intrusion into coastal aquifers; others might simply be moved further inland, but this requires considerable economic means and prioritization. With nature tourism being one of the main income sources of Gotland, monitoring and planning is required to meet the changes. Seeing Gotland in a global perspective, this island shows that holistic multi-feature studies of future consequences of sea level rise are required, to identify overall consequences for individual regions.


2009 ◽  
Vol 6 (2) ◽  
pp. 1757-1817 ◽  
Author(s):  
R. Feistel ◽  
S. Weinreben ◽  
H. Wolf ◽  
S. Seitz ◽  
P. Spitzer ◽  
...  

Abstract. The brackish water of the Baltic Sea is a mixture of ocean water from the Atlantic/North Sea with fresh water from various rivers draining a large area of lowlands and mountain ranges. The evaporation-precipitation balance results in an additional but minor excess of fresh water. The rivers carry different loads of salts washed out of the ground, in particular calcium carbonate, which cause a composition anomaly of the salt dissolved in the Baltic Sea in comparison to Standard Seawater. Directly measured seawater density shows a related anomaly when compared to the density computed from the equation of state as a function of Practical Salinity, temperature and pressure. Samples collected from different regions of the Baltic Sea during 2006–2009 were analysed for their density anomaly. The results obtained for the river load deviate significantly from similar measurements carried out forty years ago; the reasons for this decadal variability are not yet fully understood. An empirical formula is derived which estimates Absolute from Practical Salinity of Baltic Sea water, to be used in conjunction with the new Thermodynamic Equation of Seawater 2010 (TEOS-10), endorsed by IOC/UNESCO in June 2009 as the substitute for the 1980 International Equation of State, EOS-80. Our routine measurements of the samples were accompanied by studies of additional selected properties which are reported here: conductivity, density, chloride, bromide and sulphate content, total CO2 and alkalinity.


2021 ◽  
Author(s):  
Ida Margrethe Ringgaard ◽  
Jacob L. Høyer ◽  
Kristine S. Madsen ◽  
Adili Abulaitijiang ◽  
Ole B. Andersen

<p>The rise and fall of the sea surface in the coastal region is observed closely by two different sources: tide gauges measure the relative sea level anomaly at the coast at high temporal resolution (minutes or hours) and satellite altimeters measure the absolute sea surface height of the open ocean along tracks multiple times a day. However, these daily tracks are scattered across the Baltic Sea with each track being repeated at a lower temporal resolution (days). Due to the inverse relationship between spatial and temporal coverage of the satellite altimetry data, gridded satellite altimetry products often prioritize spatial coverage over temporal resolution, thus filtering out the high sea level variability. In other words, the satellite data, and especially averaged products, often miss the daily sea level variability, such as storm surges, which is most important for all societies in the coastal region. To compensate for the sparse spatial coverage from satellite altimetry, we here present an experimental product developed as part of the ESA project Baltic+SEAL:  on a 3-day scale, the DMI Optimal Interpolation (DMI-OI) method is combined with error statistics from a storm surge model as well as 3-day averages from both tide gauge observations and satellite altimetry tracks to generate a gridded sea level anomaly product for the Baltic Sea for year 2017. The product captures the overall temporal evolution of the sea level changes well for most areas with an average RMSE wrt. tide gauge observations of 17.2 cm and a maximum of 34.2 cm. Thus, the 3-day mean gridded product shows potential as an alternative to monthly altimetry products, although further work is needed.</p>


Sign in / Sign up

Export Citation Format

Share Document