scholarly journals Flood forecasting using medium-range probabilistic weather prediction

2005 ◽  
Vol 9 (4) ◽  
pp. 365-380 ◽  
Author(s):  
B. T. Gouweleeuw ◽  
J. Thielen ◽  
G. Franchello ◽  
A. P. J. De Roo ◽  
R. Buizza

Abstract. Following the developments in short- and medium-range weather forecasting over the last decade, operational flood forecasting also appears to show a shift from a so-called single solution or 'best guess' deterministic approach towards a probabilistic approach based on ensemble techniques. While this probabilistic approach is now more or less common practice and well established in the meteorological community, operational flood forecasters have only started to look for ways to interpret and mitigate for end-users the prediction products obtained by combining so-called Ensemble Prediction Systems (EPS) of Numerical Weather Prediction (NWP) models with rainfall-runoff models. This paper presents initial results obtained by combining deterministic and EPS hindcasts of the global NWP model of the European Centre for Medium-Range Weather Forecasts (ECMWF) with the large-scale hydrological model LISFLOOD for two historic flood events: the river Meuse flood in January 1995 and the river Odra flood in July 1997. In addition, a possible way to interpret the obtained ensemble based stream flow prediction is proposed.

2017 ◽  
Vol 17 (9) ◽  
pp. 1469-1485 ◽  
Author(s):  
Harvir Singh ◽  
Kopal Arora ◽  
Raghavendra Ashrit ◽  
Ekkattil N. Rajagopal

Abstract. The operational medium-range weather forecasting based on numerical weather prediction (NWP) models are complemented by the forecast products based on ensemble prediction systems (EPSs). This change has been recognised as an essentially useful tool for medium-range forecasting and is now finding its place in forecasting the extreme events. Here we investigate extreme events (heatwaves) using a high-resolution NWP model and its ensemble models in union with the classical statistical scores to serve verification purposes. With the advent of climate-change-related studies in the recent past, the rising number of extreme events and their plausible socio-economic effects have encouraged the need for forecasting and verification of extremes. Applying the traditional verification scores and associated methods to both the deterministic and the ensemble forecast, we attempted to examine the performance of the ensemble-based approach in comparison to the traditional deterministic method. The results indicate an appreciable competence of the ensemble forecast at detecting extreme events compared to the deterministic forecast. Locations of the events are also better captured by the ensemble forecast. Further, it is found that the EPS smoothes down the unexpectedly increasing signals, thereby reducing the false alarms and thus proving to be more reliable than the deterministic forecast.


2018 ◽  
Vol 146 (4) ◽  
pp. 1157-1180 ◽  
Author(s):  
Gregory C. Smith ◽  
Jean-Marc Bélanger ◽  
François Roy ◽  
Pierre Pellerin ◽  
Hal Ritchie ◽  
...  

The importance of coupling between the atmosphere and the ocean for forecasting on time scales of hours to weeks has been demonstrated for a range of physical processes. Here, the authors evaluate the impact of an interactive air–sea coupling between an operational global deterministic medium-range weather forecasting system and an ice–ocean forecasting system. This system was developed in the context of an experimental forecasting system that is now running operationally at the Canadian Centre for Meteorological and Environmental Prediction. The authors show that the most significant impact is found to be associated with a decreased cyclone intensification, with a reduction in the tropical cyclone false alarm ratio. This results in a 15% decrease in standard deviation errors in geopotential height fields for 120-h forecasts in areas of active cyclone development, with commensurate benefits for wind, temperature, and humidity fields. Whereas impacts on surface fields are found locally in the vicinity of cyclone activity, large-scale improvements in the mid-to-upper troposphere are found with positive global implications for forecast skill. Moreover, coupling is found to produce fairly constant reductions in standard deviation error growth for forecast days 1–7 of about 5% over the northern extratropics in July and August and 15% over the tropics in January and February. To the authors’ knowledge, this is the first time a statistically significant positive impact of coupling has been shown in an operational global medium-range deterministic numerical weather prediction framework.


2018 ◽  
Vol 18 (8) ◽  
pp. 2183-2202 ◽  
Author(s):  
Ekrem Canli ◽  
Martin Mergili ◽  
Benni Thiebes ◽  
Thomas Glade

Abstract. Landslide forecasting and early warning has a long tradition in landslide research and is primarily carried out based on empirical and statistical approaches, e.g., landslide-triggering rainfall thresholds. In the last decade, flood forecasting started the operational mode of so-called ensemble prediction systems following the success of the use of ensembles for weather forecasting. These probabilistic approaches acknowledge the presence of unavoidable variability and uncertainty when larger areas are considered and explicitly introduce them into the model results. Now that highly detailed numerical weather predictions and high-performance computing are becoming more common, physically based landslide forecasting for larger areas is becoming feasible, and the landslide research community could benefit from the experiences that have been reported from flood forecasting using ensemble predictions. This paper reviews and summarizes concepts of ensemble prediction in hydrology and discusses how these could facilitate improved landslide forecasting. In addition, a prototype landslide forecasting system utilizing the physically based TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability) model is presented to highlight how such forecasting systems could be implemented. The paper concludes with a discussion of challenges related to parameter variability and uncertainty, calibration and validation, and computational concerns.


Geomatics ◽  
2021 ◽  
Vol 1 (1) ◽  
pp. 81-91
Author(s):  
Amit Bhardwaj ◽  
Vinay Kumar ◽  
Anjali Sharma ◽  
Tushar Sinha ◽  
Surendra Pratap Singh

One widely recognized portal which provides numerical weather prediction forecasts is “The Observing System Research and Predictability Experiment” (THORPEX) Interactive Grand Global Ensemble (TIGGE), an initiative of WMO project. This data portal provides forecasts from 1 to 16 days (2 weeks in advance) for many variables such as rainfall, winds, geopotential height, temperature, and relative humidity. These weather forecasting centers have delivered near-real-time (with a delay of 48 hours) ensemble prediction system data to three TIGGE data archives since October 2006. This study is based on six years (2008–2013) of daily rainfall data by utilizing output from six centers, namely the European Centre for Medium-Range Weather Forecasts, the National Centre for Environmental Prediction, the Center for Weather Forecast and Climatic Studies, the China Meteorological Agency, the Canadian Meteorological Centre, and the United Kingdom Meteorological Office, and make consensus forecasts of up to 10 days lead time by utilizing the multimodal multilinear regression technique. The prediction is made over the Indian subcontinent, including the Indian Ocean. TRMM3B42 daily rainfall is used as the benchmark to construct the multimodel superensemble (SE) rainfall forecasts. Based on statistical ability ratings, the SE offers a better near-real-time forecast than any single model. On the one hand, the model from the European Centre for Medium-Range Weather Forecasting and the UK Met Office does this more reliably over the Indian domain. In a case of Indian monsoon onset, 05 June 2014, SE carries the lowest RMSE of 8.5 mm and highest correlation of 0.49 among six member models. Overall, the performance of SE remains better than any individual member model from day 1 to day 10.


2018 ◽  
Vol 15 ◽  
pp. 81-90 ◽  
Author(s):  
Laura Rontu ◽  
Anders V. Lindfors

Abstract. Downwelling shortwave radiation at the surface (SWDS, global solar radiation flux), given by three different parametrization schemes, was compared to observations in the HARMONIE–AROME numerical weather prediction (NWP) model experiments over Finland in spring 2017. Simulated fluxes agreed well with each other and with the observations in the clear-sky cases. In the cloudy-sky conditions, all schemes tended to underestimate SWDS at the daily level, as compared to the measurements. Large local and temporal differences between the model results and observations were seen, related to the variations and uncertainty of the predicted cloud properties. The results suggest a possibility to benefit from the use of different radiative transfer parametrizations in a NWP model to obtain perturbations for the fine-resolution ensemble prediction systems. In addition, we recommend usage of the global radiation observations for the standard validation of the NWP models.


Ocean Science ◽  
2019 ◽  
Vol 15 (5) ◽  
pp. 1307-1326 ◽  
Author(s):  
Catherine Guiavarc'h ◽  
Jonah Roberts-Jones ◽  
Chris Harris ◽  
Daniel J. Lea ◽  
Andrew Ryan ◽  
...  

Abstract. The development of coupled atmosphere–ocean prediction systems with utility on short-range numerical weather prediction (NWP) and ocean forecasting timescales has accelerated over the last decade. This builds on a body of evidence showing the benefit, particularly for weather forecasting, of more correctly representing the feedbacks between the surface ocean and atmosphere. It prepares the way for more unified prediction systems with the capability of providing consistent surface meteorology, wave and surface ocean products to users for whom this is important. Here we describe a coupled ocean–atmosphere system, with weakly coupled data assimilation, which was operationalised at the Met Office as part of the Copernicus Marine Environment Service (CMEMS). We compare the ocean performance to that of an equivalent ocean-only system run at the Met Office and other CMEMS products. Sea surface temperatures in particular are shown to verify better than in the ocean-only systems, although other aspects including temperature profiles and surface currents are slightly degraded. We then discuss the plans to improve the current system in future as part of the development of a “coupled NWP” system at the Met Office.


2019 ◽  
Vol 100 (7) ◽  
pp. 1245-1258 ◽  
Author(s):  
Brett Roberts ◽  
Israel L. Jirak ◽  
Adam J. Clark ◽  
Steven J. Weiss ◽  
John S. Kain

AbstractSince the early 2000s, growing computing resources for numerical weather prediction (NWP) and scientific advances enabled development and testing of experimental, real-time deterministic convection-allowing models (CAMs). By the late 2000s, continued advancements spurred development of CAM ensemble forecast systems, through which a broad range of successful forecasting applications have been demonstrated. This work has prepared the National Weather Service (NWS) for practical usage of the High Resolution Ensemble Forecast (HREF) system, which was implemented operationally in November 2017. Historically, methods for postprocessing and visualizing products from regional and global ensemble prediction systems (e.g., ensemble means and spaghetti plots) have been applied to fields that provide information on mesoscale to synoptic-scale processes. However, much of the value from CAMs is derived from the explicit simulation of deep convection and associated storm-attribute fields like updraft helicity and simulated reflectivity. Thus, fully exploiting CAM ensembles for forecasting applications has required the development of fundamentally new data extraction, postprocessing, and visualization strategies. In the process, challenges imposed by the immense data volume inherent to these systems required new approaches when considering diverse factors like forecaster interpretation and computational expense. In this article, we review the current state of postprocessing and visualization for CAM ensembles, with a particular focus on forecast applications for severe convective hazards that have been evaluated within NOAA’s Hazardous Weather Testbed. The HREF web viewer implemented at the NWS Storm Prediction Center (SPC) is presented as a prototype for deploying these techniques in real time on a flexible and widely accessible platform.


2020 ◽  
Vol 35 (2) ◽  
pp. 367-377
Author(s):  
Hyun-Ju Lee ◽  
Woo-Seop Lee ◽  
Jong Ahn Chun ◽  
Hwa Woon Lee

Abstract Forecasting extreme events is important for having more time to prepare and mitigate high-impact events because those are expected to become more frequent, intense, and persistent around the globe in the future under the warming atmosphere. This study evaluates the probabilistic predictability of the heat wave index (HWI) associated with large-scale circulation patterns for predicting heat waves over South Korea. The HWI, reflecting heat waves over South Korea, was defined as the vorticity difference at 200 hPa between the South China Sea and northeast Asia. The forecast of up to 15 days from five ensemble prediction systems and the multimodel ensemble has been used to predict the probabilistic HWI during the summers of 2011–15. The ensemble prediction systems consist of different five operational centers, and the forecast skill of the probability of heat waves occurrence was assessed using the Brier skill score (BSS), relative operating characteristics (ROC), and reliability diagram. It was found that the multimodel ensemble is capable of better predicting the large-scale circulation patterns leading to heat waves over South Korea than any other single ensemble system through all forecast lead times. We concluded that the probabilistic forecast of the HWI has promise as a tool to take appropriate and timely actions to minimize the loss of lives and properties from imminent heat waves.


2017 ◽  
Vol 145 (9) ◽  
pp. 3581-3597 ◽  
Author(s):  
L. Cucurull ◽  
R. Li ◽  
T. R. Peevey

The mainstay of the global radio occultation (RO) system, the COSMIC constellation of six satellites launched in April 2006, is already past the end of its nominal lifetime and the number of soundings is rapidly declining because the constellation is degrading. For about the last decade, COSMIC profiles have been collected and their retrievals assimilated in numerical weather prediction systems to improve operational weather forecasts. The success of RO in increasing forecast skill and COSMIC’s aging constellation have motivated planning for the COSMIC-2 mission, a 12-satellite constellation to be deployed in two launches. The first six satellites (COSMIC-2A) are expected to be deployed in December 2017 in a low-inclination orbit for dense equatorial coverage, while the second six (COSMIC-2B) are expected to be launched later in a high-inclination orbit for global coverage. To evaluate the potential benefits from COSMIC-2, an earlier version of the NCEP’s operational forecast model and data assimilation system is used to conduct a series of observing system simulation experiments with simulated soundings from the COSMIC-2 mission. In agreement with earlier studies using real RO observations, the benefits from assimilating COSMIC-2 observations are found to be most significant in the Southern Hemisphere. No or very little gain in forecast skill is found by adding COSMIC-2A to COSMIC-2B, making the launch of COSMIC-2B more important for terrestrial global weather forecasting than that of COSMIC-2A. Furthermore, results suggest that further improvement in forecast skill might better be obtained with the addition of more RO observations with global coverage and other types of observations.


2016 ◽  
Vol 144 (5) ◽  
pp. 1909-1921 ◽  
Author(s):  
Roman Schefzik

Contemporary weather forecasts are typically based on ensemble prediction systems, which consist of multiple runs of numerical weather prediction models that vary with respect to the initial conditions and/or the parameterization of the atmosphere. Ensemble forecasts are frequently biased and show dispersion errors and thus need to be statistically postprocessed. However, current postprocessing approaches are often univariate and apply to a single weather quantity at a single location and for a single prediction horizon only, thereby failing to account for potentially crucial dependence structures. Nonparametric multivariate postprocessing methods based on empirical copulas, such as ensemble copula coupling or the Schaake shuffle, can address this shortcoming. A specific implementation of the Schaake shuffle, called the SimSchaake approach, is introduced. The SimSchaake method aggregates univariately postprocessed ensemble forecasts using dependence patterns from past observations. Specifically, the observations are taken from historical dates at which the ensemble forecasts resembled the current ensemble prediction with respect to a specific similarity criterion. The SimSchaake ensemble outperforms all reference ensembles in an application to ensemble forecasts for 2-m temperature from the European Centre for Medium-Range Weather Forecasts.


Sign in / Sign up

Export Citation Format

Share Document