scholarly journals Comparison of methods for separating flood frequency of reservoir by sub-seasons

2015 ◽  
Vol 12 (10) ◽  
pp. 10431-10455 ◽  
Author(s):  
J. Li ◽  
M. Xie ◽  
K. Xie ◽  
R. Li

Abstract. The development of separate flood frequency distributions for different sub-seasons within a year can be useful for protection, storage and utilization of flood flows for the reservoir operation management. This paper applies conventional statistical method, fractal method and the mixed Von Mises distribution to the separation of flood sub-seasons for inflows to Hongfeng Reservoir in China. Design floods are found for different sub-seasons, along with flood control levels for flood regulation. The flood season is divided into four sub-seasons using the fractal method: the pre-rainy season (May), main-flood season (June and July), late-flood season I (August) and late-flood season II (September). The mixed Von Mises distribution method accounts for the general flood pattern and combines August and September as one late-flood season, for three sub-seasons with different frequency distributions. The flood regulation calculation results show little difference between the control water levels in August and September, so the two can be combined into one period.

2021 ◽  
Vol 13 (9) ◽  
pp. 4857
Author(s):  
Zitong Yang ◽  
Xianfeng Huang ◽  
Jiao Liu ◽  
Guohua Fang

In order to meet the demand of emergency water supply in the northern region without affecting normal water transfer, considering the use of the existing South-to-North Water Transfer eastern route project to explore the potential of floodwater resource utilization in the flood season of Hongze Lake and Luoma Lake in Jiangsu Province, this paper carried out relevant optimal operating research. First, the hydraulic linkages between the lakes were generalized, then the water resources allocation mode and the scale of existing projects were clarified. After that, the actual available amount of flood resources in the lakes was evaluated. The average annual available floodwater resources in 2003–2017 was 1.49 billion m3, and the maximum available capacity was 30.84 billion m3. Then, using the floodwater resource utilization method of multi period flood limited water levels, the research period was divided into the main flood season (15 July to 15 August) and the later flood season (16 August to 10 September, 11 September to 30 September) by the Systematic Clustering Analysis method. After the flood control calculation, the limited water level of Hongze Lake in the later flood season can be raised from 12.5 m to 13.0 m, and the capacity of reservoir storage can increase to 696 million m3. The limited water level of Luoma Lake can be raised from 22.5 m to 23.0 m (16 August to 10 September), 23.5 m (11 September to 30 September), and the capacity of reservoir storage can increase from 150 to 300 million m3. Finally, establishing the floodwater resource optimization model of the lake group with the goals of maximizing the floodwater transfer amount and minimizing the flood control risk rate, the optimal water allocation scheme is obtained through the optimization algorithm.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3576
Author(s):  
Jun Zhang ◽  
Yaowu Min ◽  
Baofei Feng ◽  
Weixin Duan

In today’s reservoir operation study, it is urgent to solve the issues on improving flood resource utilization, maximizing reservoir impoundment, and guaranteeing water supply through real-time regulation optimization under the premise of ensuring flood control safety and taking risks properly. Based on previous studies, the key real-time operation technologies for dynamic control of reservoir water levels in flood season are summarized. The Danjiangkou Reservoir was taken as an example, the division of flood stages, reservoir water level requirements for improving water supply guarantee, dynamic control indexes of reservoir water level for beneficial use in stages during the flood season, and flood control dispatching indexes are proposed. Moreover, a practicable real-time flood forecast operation scheme for Danjiangkou Reservoir was compiled. Its application in 2017 indicated that the established scheme can provide strong technical support to ensure the overall benefits of Danjiangkou Reservoir, including flood control, water supply, and power generation.


1982 ◽  
Vol 11 (15) ◽  
pp. 1695-1706 ◽  
Author(s):  
E.A. Yfantis ◽  
L.E. Borgman

2021 ◽  
Vol 15 (9) ◽  
pp. 471-479
Author(s):  
Nurkhairany Amyra Mokhtar ◽  
Basri Badyalina ◽  
Kerk Lee Chang ◽  
Fatin Farazh Ya'acob ◽  
Ahmad Faiz Ghazali ◽  
...  

2014 ◽  
Vol 18 (11) ◽  
pp. 4381-4389 ◽  
Author(s):  
J. L. Salinas ◽  
A. Castellarin ◽  
A. Viglione ◽  
S. Kohnová ◽  
T. R. Kjeldsen

Abstract. This study addresses the question of the existence of a parent flood frequency distribution on a European scale. A new database of L-moment ratios of flood annual maximum series (AMS) from 4105 catchments was compiled by joining 13 national data sets. Simple exploration of the database presents the generalized extreme value (GEV) distribution as a potential pan-European flood frequency distribution, being the three-parameter statistical model that with the closest resemblance to the estimated average of the sample L-moment ratios. Additional Monte Carlo simulations show that the variability in terms of sample skewness and kurtosis present in the data is larger than in a hypothetical scenario where all the samples were drawn from a GEV model. Overall, the generalized extreme value distribution fails to represent the kurtosis dispersion, especially for the longer sample lengths and medium to high skewness values, and therefore may be rejected in a statistical hypothesis testing framework as a single pan-European parent distribution for annual flood maxima. The results presented in this paper suggest that one single statistical model may not be able to fit the entire variety of flood processes present at a European scale, and presents an opportunity to further investigate the catchment and climatic factors controlling European flood regimes and their effects on the underlying flood frequency distributions.


2014 ◽  
Vol 18 (11) ◽  
pp. 4391-4401 ◽  
Author(s):  
J. L. Salinas ◽  
A. Castellarin ◽  
S. Kohnová ◽  
T. R. Kjeldsen

Abstract. This study aims to better understand the effect of catchment scale and climate on the statistical properties of regional flood frequency distributions. A database of L-moment ratios of annual maximum series (AMS) of peak discharges from Austria, Italy and Slovakia, involving a total of 813 catchments with more than 25 yr of record length is presented, together with mean annual precipitation (MAP) and basin area as catchment descriptors surrogates of climate and scale controls. A purely data-based investigation performed on the database shows that the generalized extreme value (GEV) distribution provides a better representation of the averaged sample L-moment ratios compared to the other distributions considered, for catchments with medium to higher values of MAP independently of catchment area, while the three-parameter lognormal distribution is probably a more appropriate choice for drier (lower MAP) intermediate-sized catchments, which presented higher skewness values. Sample L-moment ratios do not follow systematically any of the theoretical two-parameter distributions. In particular, the averaged values of L-coefficient of skewness (L-Cs) are always larger than Gumbel's fixed L-Cs. The results presented in this paper contribute to the progress in defining a set of "process-driven" pan-European flood frequency distributions and to assess possible effects of environmental change on its properties.


1990 ◽  
Vol 17 (5) ◽  
pp. 675-685 ◽  
Author(s):  
Harold S. Belore ◽  
Brian C. Burrell ◽  
Spyros Beltaos

In Canada, flooding due to the rise in water levels upstream of an ice jam, or the temporary exceedance of the flow and ice-carrying capacity of a channel upon release of an ice jam, has resulted in the loss of human life and extensive economic losses. Ice jam mitigation is a component of river ice management which includes all activities carried out to prevent or remove ice jams, or to reduce the damages that may result from an ice jam event. This paper presents a brief overview of measures to mitigate the damaging effects of ice jams and contains a discussion on their application to Canadian rivers. Key words: controlled ice breakup, flood control, ice jams, ice management, river ice.


Sign in / Sign up

Export Citation Format

Share Document