scholarly journals Landscape scale patterns in the character of natural organic matter in a Swedish boreal stream network

2009 ◽  
Vol 6 (2) ◽  
pp. 3261-3299 ◽  
Author(s):  
J. Temnerud ◽  
A. Düker ◽  
S. Karlsson ◽  
B. Allard ◽  
S. Köhler ◽  
...  

Abstract. This paper defines landscape-scale patterns in the character of natural organic matter (NOM) and tests for relationships to catchment soil, vegetation and topography. The drainage network of a boreal catchment, subcatchment size 0.12–78 km2, in Northern Sweden was sampled in August 2002 during a period of stable low water flow. The NOM was characterized with UV/Vis spectroscopy, fluorescence, XAD-8 fractionation (%humic substances), gel permeation chromatography (apparent molecular weight), and elemental composition (C:N). The largest spatial variation was found for C:N, absorbance ratio, and specific visible absorptivity. The lowest variation was in fluorescence index, %humic substances and molecular retention time. But the variation in total organic carbon (TOC), iron and aluminium concentration was more than twice that of C:N. Between headwater and downstream sites no significant changes were distinguished in the NOM character. At stream reaches, junctions and lakes little change (<10%) in NOM character was observed. Common factor analysis and partial least squares regression (PLS) revealed that the spatial variation in surface coverage of lakes and mires could explain some of the variation of TOC and NOM character. Our suggestion is that the mosaic of landscape elements (different amounts of water from lakes, forest soil and mires) delivers NOM with varying characteristics to a channel network that mixes conservatively downstream, with possible small changes at some stream reaches, junctions and lakes.

2009 ◽  
Vol 13 (9) ◽  
pp. 1567-1582 ◽  
Author(s):  
J. Temnerud ◽  
A. Düker ◽  
S. Karlsson ◽  
B. Allard ◽  
S. Köhler ◽  
...  

Abstract. This paper defines landscape-scale patterns in the character of natural organic matter (NOM) and tests for relationships to catchment soil, vegetation and topography. The drainage network of a boreal catchment, subcatchment size 0.12–78 km2, in Northern Sweden was sampled in August 2002 during a period of stable low water flow. The NOM was characterized with UV/Vis spectroscopy, fluorescence, XAD-8 fractionation (%humic substances), gel permeation chromatography (apparent molecular weight), and elemental composition (C:N). The largest spatial variation was found for C:N, absorbance ratio, and specific visible absorptivity. The lowest variation was in fluorescence index, %humic substances and molecular retention time. The variation in total organic carbon (TOC), iron and aluminium concentration was more than twice that of C:N. Between headwater and downstream sites no significant changes were distinguished in the NOM character. At stream reaches, junctions and lakes little change (<10%) in NOM character was observed. Common factor analysis and partial least squares regression (PLS) revealed that the spatial variation in surface coverage of lakes and mires could explain some of the variation of TOC and NOM character. Our suggestion is that the mosaic of landscape elements (different amounts of water from lakes, forest soil and mires) delivers NOM with varying characteristics to a channel network that mixes conservatively downstream, with possible small changes at some stream reaches, junctions and lakes.


Cellulose ◽  
2021 ◽  
Author(s):  
Iris Amanda A. Silva ◽  
Osmir Fabiano L. de Macedo ◽  
Graziele C. Cunha ◽  
Rhayza Victoria Matos Oliveira ◽  
Luciane P. C. Romão

AbstractUrea-based multi-coated slow release fertilizer was produced using water hyacinth, humic substances, and chitosan, with water rich in natural organic matter as a solvent. Elemental analysis showed that the nitrogen content of the fertilizer (FERT) was around 20%. Swelling tests demonstrated the effectiveness of the water hyacinth crosslinker, which reduced the water permeability of the material. Leaching tests showed that FERT released a very low concentration of ammonium (0.82 mg L−1), compared to the amount released from urea (43.1 mg L−1). No nitrate leaching was observed for FERT, while urea leached 13.1 mg L−1 of nitrate. In water and soil, FERT showed maximum releases after 30 and 40 days, respectively, while urea reached maxima in just 2 and 5 days, respectively. The results demonstrated the promising ability of FERT to reduce nitrogen losses, as well as to minimize environmental impacts in the soil–plant-atmosphere system and to improve the efficiency of nitrogen fertilization. Graphic abstract


2020 ◽  
Vol 55 (2) ◽  
pp. 155-166
Author(s):  
Mehrnaz Sadrnourmohammadi ◽  
Kenneth Brezinski ◽  
Beata Gorczyca

Abstract The effect of ozonation on the structural and chemical characteristics of natural organic matter (NOM) and its isolated humic fractions, humic acid (HA) and fulvic acid, were studied using Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR), ultraviolet/visible (UV/Vis) spectroscopy, and synchronous scanning fluorescence (SSF) spectroscopy. The results were linked to the effect of ozonation on trihalomethane formation potential (THMfp) reduction for water standards with high THM precursors. Results showed that ozonation at a dose of 1 mg ozone/mg dissolved organic carbon (DOC) was capable of reducing DOC, UV absorbance at 254 nm (UV254), and THMfp by up to 42%, 95%, and 89% for the HA water standard, respectively. The study of UV/Vis, FTIR-ATR, and SSF revealed trends showing that ozone can alter the composition of DOC in the water standards, causing a significant reduction in aromaticity. The reduction of UV254 for each ozonated sample also affirms that ozone mainly targets aromatic moieties contained in NOM. FTIR-ATR results showed that the reduction of unsaturated functional groups, including aromatic rings and C = C bonds in the water standards tested, were the main components impacted by ozone application. SSF results also revealed that ozonation decreases the fluorescence intensity of the maximum peak – as well as the whole spectra.


2011 ◽  
Vol 11 (6) ◽  
pp. 668-674 ◽  
Author(s):  
B. Q. Zhao ◽  
C. P. Huang ◽  
S. Y. Chen ◽  
D. S. Wang ◽  
T. Li ◽  
...  

Natural organic matter (NOM) plays a significant role in the fouling of ultrafiltration membranes in drinking water treatment processes. For a better understanding of the interaction between fractional components of NOM and polysulfone (PS) ultrafiltration membranes used for drinking water treatment, fouling and especially the physically irreversible fouling of natural organic matter were investigated. Resin fractionation, fluorescence excitation–emission matrix (EEM) spectroscopy, fourier transform infrared spectroscopy (FTIR), contact angle and a scanning electron microscope (SEM) were employed to identify the potential foulants. The results showed that humic acid and fulvic acid of small size were likely to permeate the membrane, while the hydrophobic fraction of humic and fulvic acid and aromatic proteins tended to be rejected and retained. Organic compounds such as proteins, humic substances, and polysaccharide-like materials, were all detected in the fouling layer. The physically irreversible fouling of the PS membrane seemed to be mainly attributed to the hydrophobic fraction of humic substances.


Chemosphere ◽  
2006 ◽  
Vol 63 (11) ◽  
pp. 1974-1982 ◽  
Author(s):  
J. Kyziol ◽  
I. Twardowska ◽  
Ph. Schmitt-Kopplin

2010 ◽  
Vol 3 (1) ◽  
pp. 1-9 ◽  
Author(s):  
H. Ødegaard ◽  
S. Østerhus ◽  
E. Melin ◽  
B. Eikebrokk

Abstract. The paper gives an overview of the methods for removal of natural organic matter (NOM) in water, particularly humic substances (HS), with focus on the Norwegian experiences. It is demonstrated that humic substances may be removed by a variety of methods, such as; molecular sieving through nanofiltration membranes, coagulation with subsequent floc separation (including granular media or membrane filtration), oxidation followed by biofiltration and sorption processes including chemisorption (ion exchange) and physical adsorption (activated carbon). All these processes are in use in Norway and the paper gives an overview of the operational experiences.


Sign in / Sign up

Export Citation Format

Share Document