scholarly journals Impact of controlled changes in grain size and pore space characteristics on the hydraulic conductivity and spectral induced polarization response of "proxies" of saturated alluvial sediments

2010 ◽  
Vol 7 (4) ◽  
pp. 6057-6080 ◽  
Author(s):  
K. Koch ◽  
A. Kemna ◽  
J. Irving ◽  
K. Holliger

Abstract. Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel, which can be regarded as proxies for widespread alluvial deposits. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. The results of this study underline the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raise some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.

2011 ◽  
Vol 15 (6) ◽  
pp. 1785-1794 ◽  
Author(s):  
K. Koch ◽  
A. Kemna ◽  
J. Irving ◽  
K. Holliger

Abstract. Understanding the influence of pore space characteristics on the hydraulic conductivity and spectral induced polarization (SIP) response is critical for establishing relationships between the electrical and hydrological properties of surficial unconsolidated sedimentary deposits, which host the bulk of the world's readily accessible groundwater resources. Here, we present the results of laboratory SIP measurements on industrial-grade, saturated quartz samples with granulometric characteristics ranging from fine sand to fine gravel. We altered the pore space characteristics by changing (i) the grain size spectra, (ii) the degree of compaction, and (iii) the level of sorting. We then examined how these changes affect the SIP response, the hydraulic conductivity, and the specific surface area of the considered samples. In general, the results indicate a clear connection between the SIP response and the granulometric as well as pore space characteristics. In particular, we observe a systematic correlation between the hydraulic conductivity and the relaxation time of the Cole-Cole model describing the observed SIP effect for the entire range of considered grain sizes. The results do, however, also indicate that the detailed nature of these relations depends strongly on variations in the pore space characteristics, such as, for example, the degree of compaction. This underlines the complexity of the origin of the SIP signal as well as the difficulty to relate it to a single structural factor of a studied sample, and hence raises some fundamental questions with regard to the practical use of SIP measurements as site- and/or sample-independent predictors of the hydraulic conductivity.


2021 ◽  
Author(s):  
◽  
Sheen Joseph

<p>Spectral Induced Polarization (SIP) is a geophysical technique that measures the frequency dependence of the electrical conductivity of a material. This thesis is an attempt to investigate the potential of using SIP as a proxy to predict the hydraulic conductivity of New Zealand shallow coastal aquifers. SIP measurements were made on sand samples that are typical of New Zealand coastal aquifers with a custom built impedance spectrometer and sample holder allowing the measurement of a phase difference as small a milliradian.  Even though the relaxation time shows a small dependence on pore fluid conductivity, especially at lower pore fluid conductivities, this variation is not serious enough to affect the hydraulic conductivity estimation at the field scale, but could be significant in the investigation of mechanisms that cause polarization in porous media.  Measurements on sieved fractions of sand established that there is an excellent correlation between the Cole-Cole relaxation time constant and grain size. The Cole-Cole relaxation time constant is very sensitive to the grain size distribution. Hydraulic conductivity predictions were attempted using various existing models. While the results are encouraging, it looks like there may not be a single universal model to predict hydraulic conductivity using SIP response.  When a correction term in the form of a multiplication constant is used, all the tested models seem to make very good predictions. But the constants calculated by fitting to the measured data could be applicable only to the type of materials studied. The dependence of the existing models on quantities like counterion diffusion coefficient, electrical formation factor and porosity makes hydraulic conductivity prediction challenging as these quantities are difficult to measure accurately in a field setting. Nevertheless it is concluded that SIP can be successfully applied to study hydraulic conductivity of New Zealand shallow coastal aquifers.</p>


2021 ◽  
Author(s):  
◽  
Sheen Joseph

<p>Spectral Induced Polarization (SIP) is a geophysical technique that measures the frequency dependence of the electrical conductivity of a material. This thesis is an attempt to investigate the potential of using SIP as a proxy to predict the hydraulic conductivity of New Zealand shallow coastal aquifers. SIP measurements were made on sand samples that are typical of New Zealand coastal aquifers with a custom built impedance spectrometer and sample holder allowing the measurement of a phase difference as small a milliradian.  Even though the relaxation time shows a small dependence on pore fluid conductivity, especially at lower pore fluid conductivities, this variation is not serious enough to affect the hydraulic conductivity estimation at the field scale, but could be significant in the investigation of mechanisms that cause polarization in porous media.  Measurements on sieved fractions of sand established that there is an excellent correlation between the Cole-Cole relaxation time constant and grain size. The Cole-Cole relaxation time constant is very sensitive to the grain size distribution. Hydraulic conductivity predictions were attempted using various existing models. While the results are encouraging, it looks like there may not be a single universal model to predict hydraulic conductivity using SIP response.  When a correction term in the form of a multiplication constant is used, all the tested models seem to make very good predictions. But the constants calculated by fitting to the measured data could be applicable only to the type of materials studied. The dependence of the existing models on quantities like counterion diffusion coefficient, electrical formation factor and porosity makes hydraulic conductivity prediction challenging as these quantities are difficult to measure accurately in a field setting. Nevertheless it is concluded that SIP can be successfully applied to study hydraulic conductivity of New Zealand shallow coastal aquifers.</p>


Geophysics ◽  
2003 ◽  
Vol 68 (5) ◽  
pp. 1547-1558 ◽  
Author(s):  
L. D. Slater ◽  
D. R. Glaser

Resistivity and induced polarization (IP) measurements (0.1–1000 Hz) were made on clay‐free unconsolidated sediments from a sandy, alluvial aquifer in the Kansas River floodplain. The sensitivity of imaginary conductivity σ″, a fundamental IP measurement, to lithological parameters, fluid conductivity, and degree of saturation was assessed. The previously reported power law dependence of IP on surface area and grain size is clearly observed despite the narrow lithologic range encountered in this unconsolidated sedimentary sequence. The grain‐size σ″ relationship is effectively frequency independent between 0.1 and 100 Hz but depends on the representative grain diameter used. For the sediments examined here, d90, the grain diameter of the coarsest sediments in a sample, is well correlated with σ″. The distribution of the internal surface in the well‐sorted, sandy sediments investigated here is such that most of the sample weight is likely required to account for the majority of the internal surface. We find the predictive capability of the Börner model for hydraulic conductivity (K)estimation from IP measurements is limited when applied to this narrow lithologic range. The relatively weak dependence of σ″ on fluid conductivity (σw) observed for these sediments when saturated with an NaCl solution (0.06–10 S/m) is consistent with competing effects of surface charge density and surface ionic mobility on σ″ as previously inferred for sandstone. Importantly, IP parameters are a function of saturation and exhibit hysteretic behavior over a drainage and imbibition cycle. However, σ″ is less dependent than the real conductivity σ′ on saturation. In the case of evaporative drying, the σ″ saturation exponent is approximately half of the σ′ exponent. Crosshole IP imaging illustrates the potential for lithologic discrimination of unconsolidated sediments. A fining‐upward sequence correlates with an upward increase in normalized chargeability Mn, a field IP parameter proportional to σ″. The hydraulic conductivity distribution obtained from the Börner model discriminates a hydraulically conductive sand–gravel from overlying medium sand.


Geophysics ◽  
2019 ◽  
Vol 84 (3) ◽  
pp. E173-E188 ◽  
Author(s):  
Sara Johansson ◽  
Matteo Rossi ◽  
Stephen A. Hall ◽  
Charlotte Sparrenbom ◽  
David Hagerberg ◽  
...  

Although many studies have been performed to investigate the spectral induced polarization (SIP) response of nonaqueous phase liquid (NAPL)-contaminated soil samples, there are still many uncertainties in the interpretation of the data. A key issue is that altered pore space geometries due to the presence of a NAPL phase will change the measured IP spectra. However, without any information on the NAPL distribution in the pore space, assumptions are necessary for the SIP data interpretation. Therefore, experimental data of SIP signals directly associated with different NAPL distributions are needed. We used high-resolution X-ray tomography and 3D image processing to quantitatively assess NAPL distributions in samples of fine-grained sand containing different concentrations of tetrachloroethylene and link this to SIP measurements on the same samples. The total concentration of the sample constituents as well as the volumes of the individual NAPL blobs were calculated and used for the interpretation of the associated SIP responses. The X-ray tomography and image analysis showed that the real sample properties (porosity and NAPL distributions) differed from the targeted ones. Both contaminated samples contained less NAPL than expected from the manual sample preparation. The SIP results showed higher real conductivity and lower imaginary conductivity in the contaminated samples compared to a clean sample. This is interpreted as an effect of increased surface conductivity along interconnected NAPL blobs and decreased surface areas in the samples due to NAPL blobs larger than and enclosing grains. We conclude that the combination of SIP, X-ray tomography, and image analysis is a very promising approach to achieve a better understanding of the measured SIP responses of NAPL-contaminated samples.


Geophysics ◽  
2010 ◽  
Vol 75 (6) ◽  
pp. E215-E226 ◽  
Author(s):  
Andreas Weller ◽  
Sven Nordsiek ◽  
Wolfgang Debschütz

Two techniques to estimate permeability are compared in this paper: nuclear magnetic resonance (NMR) and spectral-induced polarization (SIP). Both methods are based on relaxation processes. NMR records the relaxation of hydrogen nuclei after excitation in an external magnetic field. The phenomenon of induced polarization can be characterized by a relaxation of ions after excitation by an electric field. Hydrogen nuclei are concentrated in the pore water, the current flow is restricted to the pore space for most reservoir rocks, and permeability is related to the pore space geometry. Based on the similarity between fluid movement and current flow in the pore space, different relations have been published linking parameters derived from NMRand SIP data to predict permeability. NMR, SIP and permeability data have been acquired on 53 sandstone samples of the cretaceous Bahariya Formation (Western Desert, Egypt) including 27 samples showing a lamination that causes anisotropy. We compare the applicability of known and generalized relations for permeability prediction including isotropic and anisotropic samples. Because NMR relaxation ignores directionality of pore space geometry, the known relations provide only a weak accuracy in permeability estimation. The integrating parameters derived from a Debye decomposition of SIP data are partly sensitive to anisotropy. A generalized power-law relation using resistivity, chargeability, and mean relaxation time provide a reliable permeability prediction for isotropic and anisotropic samples.


2018 ◽  
Vol 16 (2) ◽  
pp. 25
Author(s):  
Dicky Ahmad Zaky ◽  
Suparwoto Suparwoto

The spectral induced polarization (SIP) method can provide apparent complex resistivity based on measurements of multi frequency. SIP method also can provide more detail information about physical properties of rocks and minerals because SIP can give spectral parameters or Cole-Cole parameters such as, changeability (m), time constant (τ) and frequency dependence (c). An Experimental study in laboratory has been conducted to knowing the SIP response of some test sample. The measurement system is built with digital oscilloscope Pico ADC-100 as device for sampling the input and output voltage. Amplifier is used to doubled up the signal and input differential. The range frequency of measurement is 10−2 Hz - 103 Hz. Porouspot Cu − CuSO4 is used to minimize the polarization at potential electrode. A Matlab listings is used to calculate the response of impedance and phase. The result from calibration that used the parallel circuit RC indicate that the measurement system was good. SIP response of porous model indicate that the response form an asymptotic resistivity, and the peak of phase is in the range frequency where the dispersion happen. The result also indicate that resistivity of small grain size model is larger than the big grain size model. Result from sample of mineralized rocks did not indicate a perfect SIP response, it is influenced by the contact between mineral and water was minimum.


2021 ◽  
Author(s):  
Lukas Aigner ◽  
Timea Katona ◽  
Hadrien Michel ◽  
Arsalan Ahmed ◽  
Thomas Hermans ◽  
...  

&lt;p&gt;Detailed information on the clay content of the subsurface and its spatial distribution plays a critical role in the interaction between surface- and groundwater. In this study, we investigate a new methodology to integrate data measured with electromagnetic and electrical geophysical methods, namely, the transient electromagnetic (TEM) and the spectral induced polarization (SIP) to quantify subsurface clay content in an imaging framework. The methodology is tested in data sets collected at a quarry close to Vienna and consists of a ca. 10 m thick clay layer below a ca. 8 m thick overburden of sandy silts. Our data set includes SIP data collected along a 315 m long profile with an electrode separation of 5 m in a frequency range from 0.1 to 225 Hz. Along this profile, we measured 26 TEM soundings using a 12.5 m loop with 24 windows recording in a time range between 4 and 140 &amp;#956;s. Ground truth information corresponds to grain size analysis conducted in 25 soil samples collected in a depth from 5 to 28 m. SIP inversion results at a single frequency provided structural a-priori information to improve the inversion of the TEM data. The inverted TEM conductivity model, nearest to the position of soil sample collection, was correlated to the grain size distribution and the resulting positive exponential relationship was used to obtain vertical 1D variations of clay content with depth. All sounding positions were interpolated to obtain a 2D image of subsurface clay content. This clay content variations were then compared to images of the Cole-Cole parameters, describing the frequency dependence of SIP imaging results. To evaluate the uncertainty in our clay estimations, we applied the Bayesian evidential learning 1D imaging (BEL1D). We obtained uncertainties of layer thickness, resistivity, and clay content by integrating the clay-conductivity relationship derived from TEM data into the BEL1D framework.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document