scholarly journals Integral quantification of seasonal soil moisture changes in farmland by cosmic-ray neutrons

2011 ◽  
Vol 8 (4) ◽  
pp. 6867-6906 ◽  
Author(s):  
C. A. Rivera Villarreyes ◽  
G. Baroni ◽  
S. E. Oswald

Abstract. The measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only a few methods are on the way to close this gap between point measurements and remote sensing. One method that could determine an integral soil moisture at this scale is the so called cosmic ray sensing that was introduced to soil hydrology very recently the first time. The present study performed cosmic ray sensing at an agricultural field in a Central European lowland. To test the method it was accompanied by other soil moisture measurements for a summer period with corn crops growing on the field and a later autumn-winter period without crops and a longer period of snow cover. Additionally, meteorological data and above-ground crop biomass was included into the evaluation. Hourly values of cosmic ray sensing showed a high statistical variability. Six-hourly values corresponded well with classical soil moisture measurements, after calibration based on one dry and three wet periods of a few days each. Crop biomass seemed to influence the measurements only to minor degree, opposed to snow cover which has a more substantial impact on the measurements. The latter could be quantitatively related to count rates in two different variants of cosmic ray counters. Overall, our study outlines a procedure to apply the cosmic ray sensing method based on devices now commercially available, without the need for accompanying numerical simulations and suited for longer monitoring periods after initial calibration.

2011 ◽  
Vol 15 (12) ◽  
pp. 3843-3859 ◽  
Author(s):  
C. A. Rivera Villarreyes ◽  
G. Baroni ◽  
S. E. Oswald

Abstract. Soil moisture at the plot or hill-slope scale is an important link between local vadose zone hydrology and catchment hydrology. However, so far only a few methods are on the way to close this gap between point measurements and remote sensing. One new measurement methodology that could determine integral soil moisture at this scale is the aboveground sensing of cosmic-ray neutrons, more precisely of ground albedo neutrons. The present study performed ground albedo neutron sensing (GANS) at an agricultural field in northern Germany. To test the method it was accompanied by other soil moisture measurements for a summer period with corn crops growing on the field and a later autumn-winter period without crops and a longer period of snow cover. Additionally, meteorological data and aboveground crop biomass were included in the evaluation. Hourly values of ground albedo neutron sensing showed a high statistical variability. Six-hourly values corresponded well with classical soil moisture measurements, after calibration based on one reference dry period and three wet periods of a few days each. Crop biomass seemed to influence the measurements only to minor degree, opposed to snow cover which has a more substantial impact on the measurements. The latter could be quantitatively related to a newly introduced field neutron ratio estimated from neutron counting rates of two energy ranges. Overall, our study outlines a procedure to apply the ground albedo neutron sensing method based on devices now commercially available, without the need for accompanying numerical simulations and suited for longer monitoring periods after initial calibration.


2013 ◽  
Vol 10 (4) ◽  
pp. 4237-4274 ◽  
Author(s):  
C. A. Rivera Villarreyes ◽  
G. Baroni ◽  
S. E. Oswald

Abstract. Measurement of soil moisture at the plot or hill-slope scale is an important link between local vadose-zone hydrology and catchment hydrology. This study evaluates the applicability of the cosmic-ray neutron sensing for soil moisture in cropped fields. Measurements of cosmic-ray neutrons (fast neutrons) were performed at a lowland farmland in Bornim (Brandenburg, Germany) cropped with sunflower and winter rye. Three field calibration approaches and four different ways of integration the soil moisture profile to an integral value for cosmic-ray neutron sensing were evaluated in this study. The cosmic-ray sensing (CRS) probe was calibrated against a network of classical point-scale soil moisture measurements. A large CRS parameter variability was observed by choosing calibration periods within the different growing stages of sunflower and winter rye. Therefore, it was not possible to identify a single set of parameters perfectly estimating soil moisture for both sunflower and winter rye periods. On the other hand, CRS signal and its parameter variability could be understood by some crop characteristics and by predicting the attenuated neutrons by crop presence. This study proves the potentiality of the cosmic-ray neutron sensing at the field scale; however, its calibration needs to be adapted for seasonal vegetation in cropped fields.


2021 ◽  
Author(s):  
Maik Heistermann ◽  
Heye Bogena ◽  
Till Francke ◽  
Andreas Güntner ◽  
Jannis Jakobi ◽  
...  

Abstract. Cosmic Ray Neutron Sensing (CRNS) has become an effective method to measure soil moisture at a horizontal scale of hundreds of meters and a depth of decimeters. Recent studies proposed to operate CRNS in a network with overlapping footprints in order to cover root-zone water dynamics at the small catchment scale, and, at the same time, to represent spatial heterogeneity. In a joint field campaign from September to November 2020 (JFC-2020), five German research institutions deployed 15 CRNS sensors in the 0.4 km2 Wüstebach catchment (Eifel mountains, Germany). The catchment is dominantly forested (but includes a substantial fraction of open vegetation), and features a topographically distinct watershed. In addition to the dense CRNS coverage, the campaign featured a unique combination of additional instruments and techniques: hydro-gravimetry (to detect water storage dynamics also below the root zone); ground-based and, for the first time, airborne CRNS roving; an extensive wireless soil sensor network, supplemented by manual measurements; and six weighable lysimeters. Together with comprehensive data from the long-term local research infrastructure, the published dataset (available at https://doi.org/10.23728/b2share.afb20a34a6ac429ca6b759238d842765) will be a valuable asset in various research contexts: to advance the retrieval of landscape water storage from CRNS, wireless soil sensor networks, or hydrogravimetry; to identify scale-specific combinations of sensors and methods to represent soil moisture variability; to improve the understanding and simulation of land-atmosphere exchange as well as hydrological and hydrogeological processes at the hill-slope and the catchment scale; and to support the retrieval soil water content from airborne and spaceborne remote sensing platforms.


Author(s):  
I.A. Golubev ◽  
◽  
A.V. Kozhukhovsky ◽  
O.I. Ivanova ◽  
◽  
...  

The results of field observations of erosion-accumulation processes caused by meltwater in the northern zone of the Krasnoyarsk forest-steppe in 2009-2017 are discussed. Hydrometeorological conditions of melt runoff formation during the study period and their influence on the values of washout and accumulation are analyzed. Data on snow cover, soil moisture in the pre-winter period, meltwater flow to the soil surface, and spring and autumn runoff are compared. Attention is focused on the autumn soil moisture. The correlation between the values of washout and preceding autumn moisture is revealed. Other things being equal, among all hydrometeorological factors on the territory of the Krasnoyarsk forest-steppe, pre-winter soil moisture has a significant impact on the intensity of erosion-accumulation processes. Keywords: soil washout, erosion, autumn moisture, hydrometeorological factors, runoff, snow cover, humidity, freezing, water permeability


2013 ◽  
Vol 10 (4) ◽  
pp. 4063-4097 ◽  
Author(s):  
J. Minet ◽  
N. E. C. Verhoest ◽  
S. Lambot ◽  
M. Vanclooster

Abstract. We analyzed the temporal stability of soil moisture patterns acquired using a proximal ground-penetrating radar (GPR) in a 2.5 ha agricultural field at five different dates over three weeks. The GPR system was mounted on a mobile platform, allowing for real-time mapping of soil moisture with a high spatial resolution (2–5 m). The spatio-temporal soil moisture patterns were in accordance with the meteorological data and with soil moisture measurements from soil core sampling. Time-stable areas showing the field-average moisture could be revealed by two methods: (1) by the computation of temporal stability indicators based on relative differences of soil moisture to the field-average and (2) by the spatial intersection of the areas showing the field-average. Locations where the mean relative difference was below 0.02 m3 m−3 extended up to 10% of the field area whereas the intersection of areas showing the field-average within a tolerance of 0.02 m3 m−3 covered 5% of the field area. Compared to most of the previous studies about temporal stability of soil moisture, time-stable areas and their spatial patterns could be revealed instead of single point locations, owing to the advanced GPR method for real-time mapping. It is believed that determining spatially coherent time-stable areas is more informative rather than determining time-stable points. Other acquisitions over larger time periods would be necessary to assert the robustness of the time-stable areas.


Water ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 37
Author(s):  
Tomás de Figueiredo ◽  
Ana Caroline Royer ◽  
Felícia Fonseca ◽  
Fabiana Costa de Araújo Schütz ◽  
Zulimar Hernández

The European Space Agency Climate Change Initiative Soil Moisture (ESA CCI SM) product provides soil moisture estimates from radar satellite data with a daily temporal resolution. Despite validation exercises with ground data that have been performed since the product’s launch, SM has not yet been consistently related to soil water storage, which is a key step for its application for prediction purposes. This study aimed to analyse the relationship between soil water storage (S), which was obtained from soil water balance computations with ground meteorological data, and soil moisture, which was obtained from radar data, as affected by soil water storage capacity (Smax). As a case study, a 14-year monthly series of soil water storage, produced via soil water balance computations using ground meteorological data from northeast Portugal and Smax from 25 mm to 150 mm, were matched with the corresponding monthly averaged SM product. Linear (I) and logistic (II) regression models relating S with SM were compared. Model performance (r2 in the 0.8–0.9 range) varied non-monotonically with Smax, with it being the highest at an Smax of 50 mm. The logistic model (II) performed better than the linear model (I) in the lower range of Smax. Improvements in model performance obtained with segregation of the data series in two subsets, representing soil water recharge and depletion phases throughout the year, outlined the hysteresis in the relationship between S and SM.


2019 ◽  
Vol 5 (9) ◽  
pp. eaax3793 ◽  
Author(s):  
◽  
Q. An ◽  
R. Asfandiyarov ◽  
P. Azzarello ◽  
P. Bernardini ◽  
...  

The precise measurement of the spectrum of protons, the most abundant component of the cosmic radiation, is necessary to understand the source and acceleration of cosmic rays in the Milky Way. This work reports the measurement of the cosmic ray proton fluxes with kinetic energies from 40 GeV to 100 TeV, with 2 1/2 years of data recorded by the DArk Matter Particle Explorer (DAMPE). This is the first time that an experiment directly measures the cosmic ray protons up to ~100 TeV with high statistics. The measured spectrum confirms the spectral hardening at ~300 GeV found by previous experiments and reveals a softening at ~13.6 TeV, with the spectral index changing from ~2.60 to ~2.85. Our result suggests the existence of a new spectral feature of cosmic rays at energies lower than the so-called knee and sheds new light on the origin of Galactic cosmic rays.


2003 ◽  
Vol 36 ◽  
pp. 184-188 ◽  
Author(s):  
Pedro Skvarca ◽  
Bruce Raup ◽  
Hernan de Angelis

AbstractSequential optical images of high spatial resolution were used for the first time to derive surface ice velocities of Glaciar Upsala, a fast-moving fresh-water calving glacier in southern Patagonia. Cross-correlation methods applied to four Landsat ETM+ images acquired in 2000–01 yielded average velocities of around 1600 m a−1, similar to values measured in the field in November 1993. The derived velocities show almost no seasonal variation for the analyzed calving termini. During the period of satellite coverage, clear readvances were detected in the autumn–winter period, followed by recessions during summers. Between 24 April 1999 and 14 October 2001, the glacier front has been fluctuating seasonally within about 400 m, in contrast to the previous dramatic recession. During the last 2.5 years, Glaciar Upsala west terminus had a net advance of around 300 m. In addition, the available satellite images allowed us to determine recent calving speeds and confirm the improved calving-rate/water-depth relationship, recently proposed by incorporating new data from Patagonian glaciers.


2021 ◽  
Author(s):  
Markus Köhli ◽  
Jannis Weimar ◽  
Benjamin Fersch ◽  
Roland Baatz ◽  
Martin Schrön ◽  
...  

<p>The novel method of Cosmic-ray neutron sensing (CRNS) allows non-invasive soil moisture measurements at a hectometer scaled footprint. Up to now, the conversion of soil moisture to a detectable neutron count rate relies mainly on the equation presented by Desilets et al. (2010). While in general a hyperbolic expression can be derived from theoretical considerations, their empiric parameterisation needs to be revised for two reasons. Firstly, a rigorous mathematical treatment reveals that the values of the four parameters are ambiguous because their values are not independent. We find a 3-parameter equation with unambiguous values of the parameters which is equivalent in any other respect to the 4-parameter equation. Secondly, high-resolution Monte-Carlo simulations revealed a systematic deviation of the count rate to soil moisture relation especially for extremely dry conditions as well as very humid conditions. That is a hint, that a smaller contribution to the intensity was forgotten or not adequately treated by the conventional approach. Investigating the above-ground neutron flux by a broadly based Monte-Carlo simulation campaign revealed a more detailed understanding of different contributions to this signal, especially targeting air humidity corrections. The packages MCNP and URANOS were used to derive a function able to describe the respective dependencies including the effect of different hydrogen pools and the detector-specific response function. The new relationship has been tested at three exemplary measurement sites and its remarkable performance allows for a promising prospect of more comprehensive data quality in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document