scholarly journals Planetary Cartography – Activities and Current Challenges

2018 ◽  
Vol 1 ◽  
pp. 1-10
Author(s):  
Andrea Nass ◽  
Kaichang Di ◽  
Stephan Elgner ◽  
Stephan van Gasselt ◽  
Trent Hare ◽  
...  

Maps are one of the most important tools for communicating geospatial information between producers and receivers. Geospatial data, tools, contributions in geospatial sciences, and the communication of information and transmission of knowledge are matter of ongoing cartographic research. This applies to all topics and objects located on Earth or on any other body in our Solar System. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to introduce the community to the field of planetary cartography and its historic foundation, to highlight some of the organizations involved and to emphasize challenges that Planetary Cartography has to face today and in the near future.

2021 ◽  
Author(s):  
Oliver Herbort ◽  
Peter Woitke ◽  
Christiane Helling ◽  
Aubrey Zerkle

<p>One of the fundamental questions for planetary science is how surfaces of other planets similar to the rocky bodies in our solar system look like. What is the rock structure like? Will there be water? Are there any active atmospheric cycles? How can these different conditions be detected?</p><p>The current space missions and ground based instruments allow the detection of specific gas species and some cloud compositions in atmospheres of giant exoplanets. With instruments<span>  </span>installed in the near future and space crafts currently being build or planned, these kind of observations will be available for planets with smaller sizes and an overall rocky composition. We aim to further understand the connection of the conditions of the upper atmosphere with the conditions on the crust of the planet (temperature, pressure, composition).</p><p>Our equilibrium chemistry models allow us to investigate the expected crust and near-crust-atmosphere composition. With this, we investigate the conditions under which liquid water is actually stable at the surface of a planet and not incorporated in hydrated rocks. Based on this crust - near-crust-atmosphere interaction we build an atmospheric model, which allows us to investigate what kind of clouds are stable and could be present in atmospheres of rocky exoplanets. This allows us to predict what clouds on other planets could be made of. Potential detection of cloud condensates and the high altitude gas phase can constrain the overall surface conditions on those planets.<span> </span></p>


Author(s):  
A. Naß ◽  
K. Di ◽  
S. Elgner ◽  
S. van Gasselt ◽  
T. Hare ◽  
...  

Planetary Cartography does not only provides the basis to support planning (e.g., landing-site selection, orbital observations, traverse planning) and to facilitate mission conduct during the lifetime of a mission (e.g., observation tracking and hazard avoidance). It also provides the means to create science products after successful termination of a planetary mission by distilling data into maps. After a mission’s lifetime, data and higher level products like mosaics and digital terrain models (DTMs) are stored in archives – and eventually into maps and higher-level data products – to form a basis for research and for new scientific and engineering studies. The complexity of such tasks increases with every new dataset that has been put on this stack of information, and in the same way as the complexity of autonomous probes increases, also tools that support these challenges require new levels of sophistication. In planetary science, cartography and mapping have a history dating back to the roots of telescopic space exploration and are now facing new technological and organizational challenges with the rise of new missions, new global initiatives, organizations and opening research markets. The focus of this contribution is to summarize recent activities in Planetary Cartography, highlighting current issues the community is facing to derive the future opportunities in this field. By this we would like to invite cartographers/researchers to join this community and to start thinking about how we can jointly solve some of these challenges.


Science ◽  
2004 ◽  
Vol 306 (5700) ◽  
pp. 1302-1304 ◽  
Author(s):  
A. Morbidelli

2021 ◽  
Author(s):  
Catarina Leote ◽  
Sérgio Pereira ◽  
João Retrê ◽  
Pedro Machado ◽  
Gabriella Gilli ◽  
...  

<p><strong>Assembling aliens to explore the Solar System</strong></p> <p>After analysing the school curricula until 7th grade (13 years old), we concluded that, at least in Portugal, there is a limited coverage of astronomy subjects. This situation is also often accompanied by limited training of primary and medium school teachers and limited availability of resources in their mother tongues, as language can also be a barrier for the use of existing resources. In addition, some astronomy concepts require a level of abstract thinking that might be discouraging for some children. The end result is that some children will have a low interest in astronomy, not only because of their personal preferences but as a consequence of low exposure to the subject or a negative perception towards it. To address this situation, the Science Communication Group of Instituto de Astrofísica e Ciências do Espaço (IA) developed a board game about the Solar System, aimed at children from 6 to 12 years old, and adapted to both formal and informal educational contexts. This project, “Help your Alien – A Solar System Game”, was funded in 2019 by the Europlanet Society through its Public Engagement Funding Scheme.</p> <p><strong>Why a board game?</strong></p> <p>By opting for a board game instead of a digital platform, we made the conscious decision of valuing the power of storytelling and social interaction as engaging and focus-promoting learning strategies, unlike the information and stimuli overload sometimes present in digital environments. Another choice made to make the game as appealing and relatable to our target public as possible was to start with a more familiar perspective, biology, as children of this age group will certainly be familiar with “animals” and their characteristics. We made a leap forward towards astrobiology, and created imaginary aliens somehow adapted to their planets and moons. While trying to assemble these imaginary creatures, in a 3-piece puzzle, the game players have to gather information about different objects of the Solar System and discover the home planet of their assembled aliens.  Another reason for creating a board game was the possibility of reaching different publics, in particular those perhaps not immediately interested in astronomy. With “ET – A Solar System Adventure”, we hope to engage children but also their families (parents, grandparents, siblings…), just for the sake of playing, while exposing them to knowledge about the Solar System.</p> <p><strong>Development of the game</strong></p> <p>The game was developed in a collaborative creative process by members of the Science Communication Group and researchers in Planetary Sciences of the IA, combining knowledge in science communication and different publics with scientific knowledge. Even though the game mechanics was inspired in already existing and well-tested games, the whole process of creating this game involved many challenges, from defining the level of complexity while keeping the game engaging, to the adventure of “creating” aliens somehow physiologically adapted to different planets and moons of the Solar System. Mistakes were made and the team had to adapt to the unexpected challenging situation of a pandemic. This resulted in many lessons learned that we hope to share with the community. The game is now at its final stages of production, with the prototype being converted into a polished version with professional illustration and design. A “Print and Play” version in Portuguese and English will soon be made available online on our website. Physical copies will also be produced depending on funding.</p> <p>In our presentation, we will present our game, as well as the premises and goals behind it, its development process, the challenges found along the way, the lessons learned and some strategies to cope with the “new normality” imposed by Covid-19, while advancing the project. We hope the presentation of “ET – A Solar System Adventure” in the EPSC2021 will help to promote this tool for planetary science education among formal and informal educators and to find international collaborations for the translation and local promotion of the game, as well as additional funding for the production of physical copies in different languages.</p>


2021 ◽  
Author(s):  
Marco Delbo ◽  
Laurent Galluccio ◽  
Francesca De Angeli ◽  
Paolo Tanga ◽  
Alberto Cellino ◽  
...  

<div class="">Asteroids reflectance spectra in the visible light will be one of the novel products of the Gaia Data Release 3 (DR3). These spectra are produced from Gaia observations obtained by means of the blue and red photometers — the so-called BP and RP, respectively. We will review the strategy adopted to produce asteroid reflectance spectra from BP-RP data, focusing on the choice of spectro-photometric calibrations computed taking into account solar system object astrometry and suitable lists of solar-analog stars.</div> <div class=""> </div> <div class="">Our preliminary investigation shows that we will be able to obtain reflectance spectra for asteroids as small as some km in the main belt, by exploiting the fact that each object has been observed multiple times by Gaia. We will show the capability of Gaia to probe the detailed compositional gradient of the main belt down to small sizes and to study correlations between spectral classes and other asteroid physical parameters, such as albedo and size.</div> <div class=""> </div> <div class="">Concerning the brightest asteroids, we expect to have substantial signal at wavelengths shorter than 450 nm, allowing Gaia to examine this region of the spectrum that has been poorly investigated by ground-based asteroid spectroscopic surveys. This region is characterised by the presence of a reflectance downturn that is diagnostic for the composition of classes of primitive asteroids, for instance those including the parent bodies of carbonaceous chondrites. These asteroids may have played an important role for the delivery of prebiotic compounds to Earth during the early phases of solar system' s history and, as such, are at the center of attention of the planetary science community. </div>


Author(s):  
Bryan Holler

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Planetary Science. Please check back later for the full article. The International Astronomical Union (IAU) officially recognizes five objects as dwarf planets: Ceres in the main asteroid belt between Mars and Jupiter; and Pluto, Eris, Haumea, and Makemake in the trans-Neptunian region beyond the orbit of Neptune. However, the definition used by the IAU applies to many other trans-Neptunian objects (TNOs) and can be summarized as any nonsatellite large enough to be rounded by its own gravity. Practically speaking, this means any nonsatellite with a diameter >400 km. In the trans-Neptunian region, there are more than 100 objects that satisfy this definition, based on published results and diameter estimates. The dynamical structure of the trans-Neptunian region records the migration history of the giant planets in the early days of the solar system. The semi-major axes, eccentricities, and orbital inclinations of TNOs across various dynamical classes provide constraints on different aspects of planetary migration. For many TNOs, the orbital parameters are all that is known about them, due to their large distances, small sizes, and low albedos. The TNO dwarf planets are a different story. These objects are large enough to be studied in more detail from ground- and space-based observatories. Imaging observations can be used to detect satellites and measure surface colors, while spectroscopy can be used to constrain surface composition. In this way, TNO dwarf planets not only help provide context for the dynamical evolution of the outer solar system, but also reveal the composition of the primordial solar nebula as well as the physical and chemical processes at work at very cold temperatures. The largest TNO dwarf planets, those officially recognized by the IAU, plus others such as Sedna, Quaoar, and Gonggong, are large enough to support volatile ices on their surfaces in the present day. These ices are able to exist as solids and gases on some TNOs, due to their sizes and surface temperatures (similar to water ice on Earth) and include N2 (nitrogen), CH4 (methane), and CO (carbon monoxide). A global atmosphere composed of these three species has been detected around Pluto, the largest TNO dwarf planet, with the possibility of local atmospheres or global atmospheres at perihelion for Eris and Makemake. The presence of nonvolatile species, such as H2O (water), NH3 (ammonia), and organics provide valuable information on objects that may be too small to retain volatile ices over the age of the solar system. In particular, large quantities of H2O mixed with NH3 points to ancient cryovolcanism caused by internal differentiation of ice from rock. Organic material, formed through radiation processing of surface ices such as CH4, records the radiation histories of these objects as well as providing clues to their primordial surface compositions. The dynamical, physical, and chemical diversity of the >100 TNO dwarf planets are key to understanding the formation of the solar system and subsequent evolution to its current state. Most of our knowledge comes from a small handful of objects, but we are continually expanding our horizons as additional objects are studied in more detail.


Life ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 52 ◽  
Author(s):  
Alex Longo ◽  
Bruce Damer

Two widely-cited alternative hypotheses propose geological localities and biochemical mechanisms for life’s origins. The first states that chemical energy available in submarine hydrothermal vents supported the formation of organic compounds and initiated primitive metabolic pathways which became incorporated in the earliest cells; the second proposes that protocells self-assembled from exogenous and geothermally-delivered monomers in freshwater hot springs. These alternative hypotheses are relevant to the fossil record of early life on Earth, and can be factored into the search for life elsewhere in the Solar System. This review summarizes the evidence supporting and challenging these hypotheses, and considers their implications for the search for life on various habitable worlds. It will discuss the relative probability that life could have emerged in environments on early Mars, on the icy moons of Jupiter and Saturn, and also the degree to which prebiotic chemistry could have advanced on Titan. These environments will be compared to ancient and modern terrestrial analogs to assess their habitability and biopreservation potential. Origins of life approaches can guide the biosignature detection strategies of the next generation of planetary science missions, which could in turn advance one or both of the leading alternative abiogenesis hypotheses.


Author(s):  
James Y.-K Cho

Tidally synchronized planets present a new opportunity for enriching our understanding of atmospheric dynamics on planets. Subject to an unusual forcing arrangement (steady irradiation on the same side of the planet throughout its orbit), the dynamics on these planets may be unlike that on any of the Solar System planets. Characterizing the flow pattern and temperature distribution on the extrasolar planets is necessary for reliable interpretation of data currently being collected, as well as for guiding future observations. In this paper, several fundamental concepts from atmospheric dynamics, likely to be central for characterization, are discussed. Theoretical issues that need to be addressed in the near future are also highlighted.


Author(s):  
Alexander MacDonald

Mankind will not remain forever confined to the Earth. In pursuit of light and space it will, timidly at first, probe the limits of the atmosphere and later extend its control to the entire solar system. —Konstantin Tsiolkovsky, Letter to B. N. Vorobyev, 1911 What do we learn from this long-run perspective on American space exploration? How does it change our understanding of the history of spaceflight? How does it change our understanding of the present? This book has provided an economic perspective on two centuries of history, with examinations of early American observatories, the rocket development program of Robert Goddard, and the political history of the space race. Although the subjects covered have been wide-ranging, together they present a new view of American space history, one that challenges the dominant narrative of space exploration as an inherently governmental activity. From them a new narrative emerges, that of the Long Space Age, a narrative that in the ...


Sign in / Sign up

Export Citation Format

Share Document