scholarly journals FEASIBILITY OF MACHINE LEARNING METHODS FOR SEPARATING WOOD AND LEAF POINTS FROM TERRESTRIAL LASER SCANNING DATA

Author(s):  
D. Wang ◽  
M. Hollaus ◽  
N. Pfeifer

Classification of wood and leaf components of trees is an essential prerequisite for deriving vital tree attributes, such as wood mass, leaf area index (LAI) and woody-to-total area. Laser scanning emerges to be a promising solution for such a request. Intensity based approaches are widely proposed, as different components of a tree can feature discriminatory optical properties at the operating wavelengths of a sensor system. For geometry based methods, machine learning algorithms are often used to separate wood and leaf points, by providing proper training samples. However, it remains unclear how the chosen machine learning classifier and features used would influence classification results. To this purpose, we compare four popular machine learning classifiers, namely Support Vector Machine (SVM), Na¨ıve Bayes (NB), Random Forest (RF), and Gaussian Mixture Model (GMM), for separating wood and leaf points from terrestrial laser scanning (TLS) data. Two trees, an <i>Erytrophleum fordii</i> and a <i>Betula pendula</i> (silver birch) are used to test the impacts from classifier, feature set, and training samples. Our results showed that RF is the best model in terms of accuracy, and local density related features are important. Experimental results confirmed the feasibility of machine learning algorithms for the reliable classification of wood and leaf points. It is also noted that our studies are based on isolated trees. Further tests should be performed on more tree species and data from more complex environments.

Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
V. P. Yadav ◽  
R. Prasad ◽  
R. Bala ◽  
A. K. Vishwakarma ◽  
S. A. Yadav ◽  
...  

Abstract. The leaf area index (LAI) is one of key variable of crops which plays important role in agriculture, ecology and climate change for global circulation models to compute energy and water fluxes. In the recent research era, the machine-learning algorithms have provided accurate computational approaches for the estimation of crops biophysical parameters using remotely sensed data. The three machine-learning algorithms, random forest regression (RFR), support vector regression (SVR) and artificial neural network regression (ANNR) were used to estimate the LAI for crops in the present study. The three different dates of Landsat-8 satellite images were used during January 2017 – March 2017 at different crops growth conditions in Varanasi district, India. The sampling regions were fully covered by major Rabi season crops like wheat, barley and mustard etc. In total pooled data, 60% samples were taken for the training of the algorithms and rest 40% samples were taken as testing and validation of the machinelearning regressions algorithms. The highest sensitivity of normalized difference vegetation index (NDVI) with LAI was found using RFR algorithms (R2 = 0.884, RMSE = 0.404) as compared to SVR (R2 = 0.847, RMSE = 0.478) and ANNR (R2 = 0.829, RMSE = 0.404). Therefore, RFR algorithms can be used for accurate estimation of LAI for crops using satellite data.


Author(s):  
Mingyue Wu ◽  
Ran Wang ◽  
Yang Hu ◽  
Mengjiao Fan ◽  
Yufan Wang ◽  
...  

This study examined the reliability of a tennis stroke classification and assessment platform consisting of a single low-cost MEMS sensor in a wrist-worn wearable device, smartphone, and computer. The data that was collected was transmitted via Bluetooth and analyzed by machine learning algorithms. Twelve right-handed male elite tennis athletes participated in the study, and each athlete performed 150 strokes. The results from three machine learning algorithms regarding their recognition and classification of the real-time data stream were compared. Stroke recognition and classification went through pre-processing, segmentation, feature extraction, and classification with Support Vector Machine (SVM), including SVM without normalization, SVM with Min–Max, SVM with Z-score normalization, K-nearest neighbor (K-NN), and Naive Bayes (NB) machine learning algorithms. During the data training process, 10-fold cross-validation was used to avoid overfitting and suitable parameters were found within the SVM classifiers. The best classifier was achieved when C = 1 using the RBF kernel function. Different machine learning algorithms’ classification of unique stroke types yielded highly reliable clusters within each stroke type with the highest test accuracy of 99% achieved by SVM with Min–Max normalization and 98.4% achieved using SVM with a Z-score normalization classifier.


Author(s):  
Angana Saikia ◽  
Vinayak Majhi ◽  
Masaraf Hussain ◽  
Sudip Paul ◽  
Amitava Datta

Tremor is an involuntary quivering movement or shake. Characteristically occurring at rest, the classic slow, rhythmic tremor of Parkinson's disease (PD) typically starts in one hand, foot, or leg and can eventually affect both sides of the body. The resting tremor of PD can also occur in the jaw, chin, mouth, or tongue. Loss of dopamine leads to the symptoms of Parkinson's disease and may include a tremor. For some people, a tremor might be the first symptom of PD. Various studies have proposed measurable technologies and the analysis of the characteristics of Parkinsonian tremors using different techniques. Various machine-learning algorithms such as a support vector machine (SVM) with three kernels, a discriminant analysis, a random forest, and a kNN algorithm are also used to classify and identify various kinds of tremors. This chapter focuses on an in-depth review on identification and classification of various Parkinsonian tremors using machine learning algorithms.


Author(s):  
Jahnavi Yeturu ◽  
Poongothai Elango ◽  
S. P. Raja ◽  
P. Nagendra Kumar

Genetics is the clinical review of congenital mutation, where the principal advantage of analyzing genetic mutation of humans is the exploration, analysis, interpretation and description of the genetic transmitted and inherited effect of several diseases such as cancer, diabetes and heart diseases. Cancer is the most troublesome and disordered affliction as the proportion of cancer sufferers is growing massively. Identification and discrimination of the mutations that impart to the enlargement of tumor from the unbiased mutations is difficult, as majority tumors of cancer are able to exercise genetic mutations. The genetic mutations are systematized and categorized to sort the cancer by way of medical observations and considering clinical studies. At the present time, genetic mutations are being annotated and these interpretations are being accomplished either manually or using the existing primary algorithms. Evaluation and classification of each and every individual genetic mutation was basically predicated on evidence from documented content built on medical literature. Consequently, as a means to build genetic mutations, basically, depending on the clinical evidences persists a challenging task. There exist various algorithms such as one hot encoding technique is used to derive features from genes and their variations, TF-IDF is used to extract features from the clinical text data. In order to increase the accuracy of the classification, machine learning algorithms such as support vector machine, logistic regression, Naive Bayes, etc., are experimented. A stacking model classifier has been developed to increase the accuracy. The proposed stacking model classifier has obtained the log loss 0.8436 and 0.8572 for cross-validation data set and test data set, respectively. By the experimentation, it has been proved that the proposed stacking model classifier outperforms the existing algorithms in terms of log loss. Basically, minimum log loss refers to the efficient model. Here the log loss has been reduced to less than 1 by using the proposed stacking model classifier. The performance of these algorithms can be gauged on the basis of the various measures like multi-class log loss.


Background/Aim: Healthcare is an unavoidable assignment to be done in human life. Cardiovascular sickness is a general class for a scope of infections that are influencing heart and veins. The early strategies for estimating the cardiovascular sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered informational collection from kaggle and it doesn't require information pre-handling systems like the expulsion of noise data, evacuation of missing information, filling default esteems if applicable and classification of attributes for prediction and decision making at different levels. The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a cardiovascular disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting cardiovascular disease. Results: The machine learning algorithms under study were able to predict cardiovascular disease in patients with accuracy between 58.71% and 77.06%. Conclusions: It was shown that Logistic Regression has better Accuracy (77.06 %) when compared to different Machine-learning Algorithms.


2020 ◽  
Vol 10 (17) ◽  
pp. 5956
Author(s):  
Sławomir K. Zieliński ◽  
Hyunkook Lee ◽  
Paweł Antoniuk ◽  
Oskar Dadan

The purpose of this paper is to compare the performance of human listeners against the selected machine learning algorithms in the task of the classification of spatial audio scenes in binaural recordings of music under practical conditions. The three scenes were subject to classification: (1) music ensemble (a group of musical sources) located in the front, (2) music ensemble located at the back, and (3) music ensemble distributed around a listener. In the listening test, undertaken remotely over the Internet, human listeners reached the classification accuracy of 42.5%. For the listeners who passed the post-screening test, the accuracy was greater, approaching 60%. The above classification task was also undertaken automatically using four machine learning algorithms: convolutional neural network, support vector machines, extreme gradient boosting framework, and logistic regression. The machine learning algorithms substantially outperformed human listeners, with the classification accuracy reaching 84%, when tested under the binaural-room-impulse-response (BRIR) matched conditions. However, when the algorithms were tested under the BRIR mismatched scenario, the accuracy obtained by the algorithms was comparable to that exhibited by the listeners who passed the post-screening test, implying that the machine learning algorithms capability to perform in unknown electro-acoustic conditions needs to be further improved.


Author(s):  
Muhammad Aamir ◽  
Syed Sajjad Hussain Rizvi ◽  
Manzoor Ahmed Hashmani ◽  
Muhammad Zubair ◽  
Jawwad Ahmed . Usman

Cyber security is one of the major concerns of today’s connected world. For all the platforms of today’s communication technology such as wired, wireless, local and remote access, the hackers are present to corrupt the system functionalities, circumvent the security measures and steal sensitive information. Amongst many techniques of hackers, port scanning and Distributed Denial of Service (DDoS) attacks are very common. In this paper, the benefits of machine learning are taken into consideration for classification of port scanning and DDoS attacks in a mix of normal and attack traffic. Different machine learning algorithms are trained and tested on a recently published benchmark dataset (CICIDS2017) to identify the best performing algorithms on the data which contains more recent vectors of port scanning and DDoS attacks. The classification results show that all the variants of discriminant analysis and Support Vector Machine (SVM) provide good testing accuracy i.e. more than 90%. According to a subjective rating criterion mentioned in this paper, 9 algorithms from a set of machine learning experiments receive the highest rating (good) as they provide more than 85% classification (testing) accuracy out of 22 total algorithms. This comparative analysis is further extended to observe training performance of machine learning models through k-fold cross validation, Area Under Curve (AUC) analysis of the Receiver Operating Characteristic (ROC) curves, and dimensionality reduction using the Principal Component Analysis (PCA). To the best of our knowledge, a comprehensive comparison of various machine learning algorithms on CICIDS2017 dataset is found to be deficient for port scanning and DDoS attacks while considering such recent features of attack.


2021 ◽  
Vol 11 (12) ◽  
pp. 3141-3152
Author(s):  
N. Subhashini ◽  
A. Kandaswamy

The actions of humans executed by their hands play a remarkable part in controlling and handling variety of objects in their daily life activities. The effect of losing or degradation in the functioning of one hand has a greater influence in bringing down the regular activity. Hence the design of prosthetic hands which assists the individuals to enhance their regular activity seems a better remedy in this new era. This paper puts forward a classification framework using machine learning algorithms for classifying hand gesture signals. The surface electromyography (sEMG) dataset acquired for 9 wrist movements of publicly available database are utilized to identify the potential biomarkers for classification and in evaluating the efficacy of the proposed algorithm. The statistical and time domain features of the sEMG signals from 27 intact subjects and 11 trans-radial amputated subjects are extracted and the optimal features are determined implementing the feature selection approach based on correlation factor. The classifiers performance of machine learning algorithms namely support vector machine (SVM), Naïve bayes (NB) and Ensemble classifier are evaluated. The experimental results highlight that the SVM classifier can yield the maximum accuracy movement classification of 99.6% for intact and 97.56% for trans-amputee subjects. The proposed approach offers better accuracy and sensitivity compared to other approaches that have used the sEMG dataset for movement classification.


Author(s):  
Hanein Omar Mohamed, Basma.F.Idris Hanein Omar Mohamed, Basma.F.Idris

Asthma is a chronic disease that is caused by inflammation of airways. Diagnosis, predication and classification of asthmatic are one of the major attractive areas of research for decades by using different and recent techniques, however the main problem of asthma is misdiagnosis. This paper simplifies and compare between different Artificial Neural Network techniques used to solve this problem by using different algorithms to getting a high level of accuracyin diagnosis, prediction, and classification of asthma like: (data mining algorithms, machine learning algorithms, deep machine learning algorithms), depending and passing through three stages: data acquisition, feature extracting, data classification. According to the comparison of different techniques the high accuracy achieved by ANN was (98.85%), and the low accuracy of it was (80%), despite of the accuracy achieved by Support Vector Machine (SVM) was (86%) when used Mel Frequency Cepstral Coefficient MFCC for feature extraction, while the accuracy was (99.34%) when used Relief for extracting feature. Based in our comparison we recommend that if the researchers used the same techniques they should to return to previous studies it to get high accuracy.


Sign in / Sign up

Export Citation Format

Share Document