scholarly journals A METHOD OF WATER DEPTH INVERSION IN COASTAL AREA CONSIDERING TEMPERATURE INFORMATION

Author(s):  
Y. Liu ◽  
X. Gao ◽  
G. Wang ◽  
T. Zhang ◽  
J. Wang

Abstract. The remote sensing method for water depth inversion is fast, flexible, and low in cost, which has become an important means of method for water depth detection. This paper takes the coastal area where is around Gulangyu Island as the research area. Based on the spectral reflectance, sea surface temperature (SST) and measured water depth data, a nonlinear inversion model of water depth is established by using BP neural network. Combined with the tide data, the water depth and underwater topography in coastal area is obtained. The average relative error is 0.27. The root mean square error is 1.92. The results show that the participation of sea surface temperature in the model construction can improve the inversion error of offshore water depth to a certain extent, and can help improve the accuracy of the model.

Author(s):  
Vinh Vu Duy ◽  
Sylvain Ouillon ◽  
Hai Nguyen Minh

Based on the Mann-Kendall test and Sen’s slope method, this study investigates the monthly, seasonal, and annual sea surface temperature (SST) trends in the coastal area of Hai Phong (West of Tonkin Gulf) based on the measurements at Hon Dau Station from 1995 to 2020. The results show a sea surface warming trend of 0.02°C/year for the period 1995-2020 (significant level α = 0.1) and of 0.093°C/year for the period 2008-2020 (significant level α = 0.05). The monthly SSTs in June and September increased by 0.027°C/year and 0.036°C/year, respectively, for the period 1995-2020, and by 0.080°C/year and 0.047°C/year, respectively, for the period 2008-2020. SST trends in winter, summer, and other months were either different for the two periods or not significant enough. This may be due to the impact of ENSO, which caused interannual SST variability in the Hai Phong coastal with two intrinsic mode functions (IMF) signals a period of ~2 (IMF3) and ~5.2 years cycle (IMF4). A combination of these signals had a maximum correlation of 0.22 with ONI (Oceanic Niño Index) delayed by 8 months. ENSO events took ~8 months to affect SST at Hai Phong coastal area for 1995-2020 and caused a variation of SST within 1.2°C.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mayandi Sivaguru ◽  
Lauren G. Todorov ◽  
Courtney E. Fouke ◽  
Cara M. O. Munro ◽  
Kyle W. Fouke ◽  
...  

AbstractThe Scleractinian corals Orbicella annularis and O. faveolata have survived by acclimatizing to environmental changes in water depth and sea surface temperature (SST). However, the complex physiological mechanisms by which this is achieved remain only partially understood, limiting the accurate prediction of coral response to future climate change. This study quantitatively tracks spatial and temporal changes in Symbiodiniaceae and biomolecule (chromatophores, calmodulin, carbonic anhydrase and mucus) abundance that are essential to the processes of acclimatization and biomineralization. Decalcified tissues from intact healthy Orbicella biopsies, collected across water depths and seasonal SST changes on Curaçao, were analyzed with novel autofluorescence and immunofluorescence histology techniques that included the use of custom antibodies. O. annularis at 5 m water depth exhibited decreased Symbiodiniaceae and increased chromatophore abundances, while O. faveolata at 12 m water depth exhibited inverse relationships. Analysis of seasonal acclimatization of the O. faveolata holobiont in this study, combined with previous reports, suggests that biomolecules are differentially modulated during transition from cooler to warmer SST. Warmer SST was also accompanied by decreased mucus production and decreased Symbiodiniaceae abundance, which is compensated by increased photosynthetic activity enhanced calcification. These interacting processes have facilitated the remarkable resiliency of the corals through geological time.


2019 ◽  
Vol 4 (1) ◽  
pp. 81
Author(s):  
Sony Angga Satrya, Abdul Manan

Abstract Aplication Ocean Remote Sensing technology to many use for field fisheries, once use this technology in forecast fertility water. The aim of this study was to determine the feasibility of Bali coastal area for cage of pearl oyster culture. The method used is a descriptive method of data collection. Satellite image processing activities Aqua/Terra Modis starting with the collection of satellite image data from the database NASA via OceanColor Web site, the selection of a clean image data, and than download of satellite images. The first stages of image data processing are used software ENVI 4.7, with procedures are coloring the image, limiting the minimum and maximum temperatures and sea surface chlorophyll-a, and classifiying of the image based on the value of sea surface temperature. Sea surface temperature parameter determine the location of the cage of pearl oysters (Pinctada maxima) culture. Suitability of the location of the cage of pearl oyster culture on Bali coastal area, at coordinates 8° 33' 00.97 " - 8° 42' 05.30" South Latitude and 115° 18' 03.40 " - 115° 39 ' 03.21" East Longitude. Based on geographical, that the location in the southeastern Bali coastal area and on the northern area of Nusa Pennida island.


Author(s):  
Safruddin ◽  
Rachmat Hidayat ◽  
Yashinta Kumala Dewi ◽  
Moh. Tauhid Omar ◽  
St. Aisjah Farhum ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document