scholarly journals EXPLORATORY USER STUDY TO EVALUATE THE EFFECT OF STREET NAME CHANGES ON ROUTE PLANNING USING 2D MAPS

Author(s):  
Victoria Rautenbach ◽  
Serena Coetzee ◽  
Melissa Hankel

This paper presents the results of an exploratory user study using 2D maps to observe and analyse the effect of street name changes on prospective route planning. The study is part of a larger research initiative to understand the effect of street name changes on wayfinding. The common perception is that street name changes affect our ability to navigate an environment, but this has not yet been tested with an empirical user study. A combination of a survey, the thinking aloud method and eye tracking was used with a group of 20 participants, mainly geoinformatics students. A within-subject participant assignment was used. Independent variables were the street network (regular and irregular) and orientation cues (street names and landmarks) portrayed on a 2D map. Dependent variables recorded were the performance (<i>were the participant able to plan a route between the origin and destination?</i>); the accuracy (<i>was the shortest path identified?</i>); the time taken to complete a task; and fixation points with eye tracking. Overall, the results of this exploratory study suggest that street name changes impact the prospective route planning performance and process that individuals use with 2D maps. The results contribute to understanding how route planning changes when street names are changed on 2D maps. It also contributes to the design of future user studies. To generalise the findings, the study needs to be repeated with a larger group of participants.

Author(s):  
Victoria Rautenbach ◽  
Serena Coetzee ◽  
Melissa Hankel

This paper presents the results of an exploratory user study using 2D maps to observe and analyse the effect of street name changes on prospective route planning. The study is part of a larger research initiative to understand the effect of street name changes on wayfinding. The common perception is that street name changes affect our ability to navigate an environment, but this has not yet been tested with an empirical user study. A combination of a survey, the thinking aloud method and eye tracking was used with a group of 20 participants, mainly geoinformatics students. A within-subject participant assignment was used. Independent variables were the street network (regular and irregular) and orientation cues (street names and landmarks) portrayed on a 2D map. Dependent variables recorded were the performance (&lt;i&gt;were the participant able to plan a route between the origin and destination?&lt;/i&gt;); the accuracy (&lt;i&gt;was the shortest path identified?&lt;/i&gt;); the time taken to complete a task; and fixation points with eye tracking. Overall, the results of this exploratory study suggest that street name changes impact the prospective route planning performance and process that individuals use with 2D maps. The results contribute to understanding how route planning changes when street names are changed on 2D maps. It also contributes to the design of future user studies. To generalise the findings, the study needs to be repeated with a larger group of participants.


2021 ◽  
Vol 11 (13) ◽  
pp. 6197
Author(s):  
Alexandros A. Lavdas ◽  
Nikos A. Salingaros ◽  
Ann Sussman

Eye-tracking technology is a biometric tool that has found many commercial and research applications. The recent advent of affordable wearable sensors has considerably expanded the range of these possibilities to fields such as computer gaming, education, entertainment, health, neuromarketing, psychology, etc. The Visual Attention Software by 3M (3M-VAS) is an artificial intelligence application that was formulated using experimental data from eye-tracking. It can be used to predict viewer reactions to images, generating fixation point probability maps and fixation point sequence estimations, thus revealing pre-attentive processing of visual stimuli with a very high degree of accuracy. We have used 3M-VAS software in an innovative implementation to analyze images of different buildings, either in their original state or photographically manipulated, as well as various geometric patterns. The software not only reveals non-obvious fixation points, but also overall relative design coherence, a key element of Christopher Alexander’s theory of geometrical order. A more evenly distributed field of attention seen in some structures contrasts with other buildings being ignored, those showing instead unconnected points of splintered attention. Our findings are non-intuitive and surprising. We link these results to both Alexander’s theory and Neuroscience, identify potential pitfalls in the software’s use, and also suggest ways to avoid them.


Author(s):  
Piercarlo Dondi ◽  
Marco Porta ◽  
Angelo Donvito ◽  
Giovanni Volpe

AbstractInteractive and immersive technologies can significantly enhance the fruition of museums and exhibits. Several studies have proved that multimedia installations can attract visitors, presenting cultural and scientific information in an appealing way. In this article, we present our workflow for achieving a gaze-based interaction with artwork imagery. We designed both a tool for creating interactive “gaze-aware” images and an eye tracking application conceived to interact with those images with the gaze. Users can display different pictures, perform pan and zoom operations, and search for regions of interest with associated multimedia content (text, image, audio, or video). Besides being an assistive technology for motor impaired people (like most gaze-based interaction applications), our solution can also be a valid alternative to the common touch screen panels present in museums, in accordance with the new safety guidelines imposed by the COVID-19 pandemic. Experiments carried out with a panel of volunteer testers have shown that the tool is usable, effective, and easy to learn.


2009 ◽  
Vol 8 (1) ◽  
pp. 75-88 ◽  
Author(s):  
Niklas Elmqvist ◽  
Ulf Assarsson ◽  
Philippas Tsigas

Recent developments in occlusion management for 3D environments often involve the use of dynamic transparency, or "virtual X-ray vision", to promote target discovery and access in complex 3D worlds. However, there are many different approaches to achieving this effect and their actual utility for the user has yet to be evaluated. Furthermore, the introduction of semitransparent surfaces adds additional visual complexity that may actually have a negative impact on task performance. In this paper, we report on an empirical user study investigating these human aspects of dynamic transparency. Our implementation of the technique is an image-space algorithm built using modern programmable shaders to achieve real-time performance and visually pleasing results. Results from the user study indicate that dynamic transparency provides superior performance for perceptual tasks in terms of both efficiency and correctness. Subjective ratings are also firmly in favor of the method.


2018 ◽  
Vol 12 ◽  
Author(s):  
Lap-Yan Lo ◽  
Cheuk-Yu Tsang

An object located in the centre position is believed to be the most attended and well remembered, which increases its likelihood of being chosen (i.e., centrality preference). However, the literature has yielded inconsistent evidence. With the support of an eye-tracking technique, this study tried to provide another means of examining the relationship between preference and attention. Thirty undergraduates were asked to choose one of five similar items presented on a horizontal line. The findings on eye fixation points and looking duration positively related to the probability of an item being chosen as the preferred item. Yet performance in a recall test revealed an independence between preference and remembering. Furthermore, an unexpectedly large proportion of the participants also preferred the items on the leftmost side of the array. The mental number line and social norms, together with centrality preference, were used to provide an explanation of our implicit preference in decision making.


2017 ◽  
Vol 2017 ◽  
pp. 1-10
Author(s):  
Qian Xu ◽  
Tang-yi Guo ◽  
Fei Shao ◽  
Xue-jiao Jiang

The area of interest (AOI) reflects the degree of attention of a driver while driving. The division of AOI is visual characteristic analysis required in both real vehicle tests and simulated driving scenarios. Some key eye tracking parameters and their transformations can only be obtained after the division of AOI. In this study, 9 experienced and 7 novice drivers participated in real vehicle driving tests. They were asked to drive along a freeway section and a highway section, wearing the Dikablis eye tracking device. On average, 8132 fixation points for each driver were extracted. After coordinate conversion, the MSAP (Mean Shift Affinity Propagation) method is proposed to classify the distribution of fixation points into a circle type and a rectangle type. Experienced drivers’ fixation behavior falls into the circle type, in which fixation points are concentrated. Novice drivers’ fixation points, which are decentralized, are illustrated in the rectangle type. In the clustering algorithm, the damping coefficient λ determines the algorithm convergence, and the deviation parameter p mainly affects the number of clusters, where larger p values generate more clusters. This study not only provides the cluster type and cluster counts, but also presents the borderlines for each cluster. The findings provide significant contribution to eye tracking research.


Author(s):  
J. Mirijovsky ◽  
S. Popelka

The main aim of presented paper is to find the most realistic and preferred color settings for four different types of surfaces on the aerial images. This will be achieved through user study with the use of eye-movement recording. Aerial images taken by the unmanned aerial system were used as stimuli. From each image, squared crop area containing one of the studied types of surfaces (asphalt, concrete, water, soil, and grass) was selected. For each type of surface, the real value of reflectance was found with the use of precise spectroradiometer ASD HandHeld 2 which measures the reflectance. The device was used at the same time as aerial images were captured, so lighting conditions and state of vegetation were equal. The spectral resolution of the ASD device is better than 3.0 nm. For defining the RGB values of selected type of surface, the spectral reflectance values recorded by the device were merged into wider groups. Finally, we get three groups corresponding to RGB color system. Captured images were edited with the graphic editor Photoshop CS6. Contrast, clarity, and brightness were edited for all surface types on images. Finally, we get a set of 12 images of the same area with different color settings. These images were put into the grid and used as stimuli for the eye-tracking experiment. Eye-tracking is one of the methods of usability studies and it is considered as relatively objective. Eye-tracker SMI RED 250 with the sampling frequency 250 Hz was used in the study. As respondents, a group of 24 students of Geoinformatics and Geography was used. Their task was to select which image in the grid has the best color settings. The next task was to select which color settings they prefer. Respondents’ answers were evaluated and the most realistic and most preferable color settings were found. The advantage of the eye-tracking evaluation was that also the process of the selection of the answers was analyzed. Areas of Interest were marked around each image in the grid and the sequences of gaze movements were analyzed. Sequence chart was used for visualization and eye-tracking metrics were statistically tested. The presented paper shows the differences in the perception and preferences of aerial images with different color settings.


Sign in / Sign up

Export Citation Format

Share Document