scholarly journals EXPERIENCING THE INACCESSIBLE. A FRAMEWORK FOR VIRTUAL INTERPRETATION AND VISUALIZATION OF REMOTE, RISKY OR RESTRICTED ACCESS HERITAGE PLACES

Author(s):  
I. Trizio ◽  
S. Brusaporci ◽  
A. Luigini ◽  
A. Ruggieri ◽  
A. Basso ◽  
...  

<p><strong>Abstract.</strong> In order to be properly handed down, especially in particular conditions with a high rate of vulnerability, cultural heritage requires documentation and enhancement strategies. The case study presented in this paper is particularly critical not only for the conservation conditions, but especially for the environmental conditions: the Catacombs of San Vittorino have complex conditions of recovery, because of the nature of the artefact and because of the poor lighting of the main environments. For this particularity, a workflow was developed that, in order to achieve the creation of an immersive device navigable by digital viewers such as Oculus Rift or similar, required the start-up of shooting by laser scanning, and then treat the point cloud with different software, in order to obtain a satisfactory result that, in other contexts, could have started easily from a photogrammetric shooting.</p>

Author(s):  
S. Chiarini ◽  
S. Cremonesi ◽  
L. Fregonese ◽  
F. Fassi ◽  
L. Taffurelli

In this paper, a Cultural Heritage survey, performed by employing and integrating different type of acquisition technologies (imagebased and active sensor based) is presented. The aim of the survey is to create a 3D multiscale database, therefore, different restitution scales, from the architectural-urban one to a detail one are taken in consideration. This research is part of a project financed by the Unesco for the study of historical gardens located in Mantua and Sabbioneta, and in particular for the <i>Palazzo Te</i> renaissance gardens in Mantua, which are reported in this paper. First of all, a general survey of the area has been realized by employing the classical aerial photogrammetry in order to provide the actual arboreal and urban furniture conditions of the gardens (1:500 scale). Next, a detailed photogrammetric survey of the Esedra courtyard in <i>Palazzo Te</i> has been performed by using a UAV system. At the end, laser scanning and traditional topography have been used for the terrestrial detailed acquisition of gardens and architectural façades (1:50&ndash;1:20 scale). The aim of this research is to create a suitable graphical documentation support for the study of the structure of the gardens, to analyze how they have been modified over the years and as an effective support for eventual future re-design. Moreover, the research has involved a certain number of botanic and archeological investigations, which have been duly acquired and modeled with image based systems.<br><br> Starting from the acquired datasets with their acquisition scales, a series of comparative analysis have been performed, especially for those areas in which all the systems have been employed. The comparisons have been extracted by analyzing point cloud models obtained by using a topographical network.<br><br> As a result, the multi-range approach efficiency, obtained by employing the actual available technologies have been illustrated in the present work.


Author(s):  
I. Selvaggi ◽  
M. Dellapasqua ◽  
F. Franci ◽  
A. Spangher ◽  
D. Visintini ◽  
...  

Terrestrial remote sensing techniques, including both Terrestrial Laser Scanning (TLS) and Close-Range Photogrammetry (CRP), have been recently used in multiple applications and projects with particular reference to the documentation/inspection of a wide variety of Cultural Heritage structures.<br> The high density of TLS point cloud data allows to perform structure survey in an unprecedented level of detail, providing a direct solution for the digital three-dimensional modelling, the site restoration and the analysis of the structural conditions. Textural information provided by CRP can be used for the photorealistic representation of the surveyed structure. With respect to many studies, the combination of TLS and CRP techniques produces the best results for Cultural Heritage documentation purposes. Moreover, TLS and CRP point cloud data have been proved to be useful in the field of deformation analysis and structural health monitoring. They can be the input data for the Finite Element Method (FEM), providing some prior knowledge concerning the material and the boundary conditions such as constraints and loading.<br> The paper investigates the capabilities and advantages of TLS and CRP data integration for the three-dimensional modelling compared to a simplified geometric reconstruction. This work presents some results concerning the Baptistery of Aquileia in Italy, characterized by an octagonal plan and walls composed by masonry stones with good texture.


2021 ◽  
Author(s):  
Abdullah Taha Ahmed Albourae

There are various surveying techniques used in the field of cultural heritage documentation. Close Range Photogrammetry (CRP) and Terrestrial Laser Scanning (TLS) techniques have been widely used in 3D modeling applications. Various research studies integrate these techniques to enhance the quality of the data acquired. The main objective of this research is to assess the accuracy of TLS and CRP. The two methods are applied to two culture heritage case studies, which are located in the historic district in Jeddah, Saudi Arabia. The data obtained from both techniques is compared with data captured using traditional surveying techniques as reference data. The results show that TLS tends to be more accurate than CRP. In the first case study (Bab Makkah), CRP and TLS produced 0.044 m and 0.008 m overall RMS error, respectively; while CRP produced 0.025 m and TLS produced 0.021 m in the second case study (Bab Sharif).


Author(s):  
Saadet Armağan Güleç Korumaz ◽  
◽  
Büşra Kubiloğlu ◽  

3D Laser Scanning technologies have proven to be significant way to architectural documentation studies. Due to these facilities, the use of technology in architectural documentation have become widespread day by day. Thanks to these technologies it is possible to get high accuracy and intense data in a short time compared to conventional methods. Therefore, this technology has increased the content and quality of conservation practices. The technology is mainly aimed at obtaining a three-dimensional model or two-dimensional layouts from a dense and detailed point cloud. Terrestrial Laser Scanning (TLS) does not only support simple CAD-based conservation projects, but also allows obtaining high-resolution plane pictures, art tours, three-dimensional mesh models, and two-dimensional maps. Besides these possibilities, high accuracy data on the morphological properties of the documented object can be obtained as a result of the analyses including point cloud. On the other hand, the technology gives possibility data to be shared in different environments and filtered data can be used online. Thus, different disciplines are able to easily access information. These features of technology add a different dimension to the studies in the field of cultural heritage and contribute to the digitalization of the heritage. In the scope of this study, evaluations are made regarding the innovations and usage possibilities brought by TLS technology to architectural documentation field based on the cultural heritage samples. In addition, within the scope of the study, trials were made on field studies for parameters that will affect data quality, accuracy and speed. In addition, within the scope of the study, some tests were made on field studies for parameters affecting data quality, accuracy and speed. With the obtained results, evaluations have been made to increase the usage potential of the technology today.


Author(s):  
V. E. Oniga ◽  
A. I. Breaban ◽  
E. I. Alexe ◽  
C. Văsii

Abstract. Indoor mapping and modelling is an important research subject with application in a wide range of domains including interior design, real estate, cultural heritage conservation and restoration. There are multiple sensors applicable for 3D indoor modelling, but the laser scanning technique is frequently used because of the acquisition time, detailed information and accuracy. In this paper, the efficiency of the Maptek I-Site 8820 terrestrial scanner, which is a long-range laser scanner and the accuracy of a HMLS point cloud acquired with a mobile scanner, namely GeoSlam Zeb Horizon were tested for indoor mapping. Aula Magna “Carmen Silva” of the “Gheorghe Asachi” Technical University of Iasi is studied in the current paper since the auditorium interior creates a distinct environment that combines complex geometric structures with architectural lighting and for preserving its great cultural value, the monument has a national historical significance. The registration process of the TLS point clouds was done using two methods: a semi-automatic one with artificial targets and a completely automatic one, based on Iterative Closest Point (ICP) algorithm. The resulted TLS point cloud was analysed in relation to the HMLS point cloud by computing the M3C2 (Multiscale Model to Model Cloud Comparison), obtaining a standard deviation of 2.1 cm and by investigating the Hausdorff distances from which resulted a standard deviation (σ) of 1.6 cm. Cross-sections have been extracted from the HMLS and TLS point clouds and after comparing the sections, 80% of the sigma values are less or equal to 1 cm. The results show high potential of using HMLS and also a long-range laser scanner for 3D modelling of complex scenes, the occlusion effect in the case of TLS being only 5% of the scanned area.


Author(s):  
G. Stavropoulou ◽  
G. Tzovla ◽  
A. Georgopoulos

Over the past decade, large-scale photogrammetric products have been extensively used for the geometric documentation of cultural heritage monuments, as they combine metric information with the qualities of an image document. Additionally, the rising technology of terrestrial laser scanning has enabled the easier and faster production of accurate digital surface models (DSM), which have in turn contributed to the documentation of heavily textured monuments. However, due to the required accuracy of control points, the photogrammetric methods are always applied in combination with surveying measurements and hence are dependent on them. Along this line of thought, this paper explores the possibility of limiting the surveying measurements and the field work necessary for the production of large-scale photogrammetric products and proposes an alternative method on the basis of which the necessary control points instead of being measured with surveying procedures are chosen from a dense and accurate point cloud. Using this point cloud also as a surface model, the only field work necessary is the scanning of the object and image acquisition, which need not be subject to strict planning. To evaluate the proposed method an algorithm and the complementary interface were produced that allow the parallel manipulation of 3D point clouds and images and through which single image procedures take place. The paper concludes by presenting the results of a case study in the ancient temple of Hephaestus in Athens and by providing a set of guidelines for implementing effectively the method.


2019 ◽  
Vol 289 ◽  
pp. 10007
Author(s):  
Elisabeth Marie-Victoire ◽  
Myriam Bouichou

Corrosion in reinforced concrete is generally attributed to either carbonation or chloride presence in the vicinity of the bars. But in the field of cultural heritage, especially for the most ancient monuments, it is not rare to encounter both carbonated and chloride polluted concrete, inducing heavy corrosion, as was the case in the Villa E-1027 in Roquebrune-Cap-Martin, on the French Mediterranean seashore. The villa was designed by Eileen Gray and Jean Badovici between 1926 and 1929. Due to aggressive environmental conditions and a period of dereliction, the concrete of the villa was quite heavily decayed and a deep restoration was led between 2000 and 2006. But after a little more than 10 years, and despite active maintenance, the villa is again facing corrosion induced decay. Prior to the definition of a new restoration protocol, to better evaluate the corrosion activity, in 2017 a permanent monitoring of moisture and temperature both in the air and in the concrete was installed. In the meantime, a series of instant electrochemical measurements was performed from 2017 to 2018. A first analysis of the results of the monitoring and the non-destructive tests clearly evidences that probably due to the conjunction of the carbonation of the concrete and external active chloride pollution, corrosion can happen at quite low moisture content.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Peerasit Mahasuwanchai ◽  
Chainarong Athisakul ◽  
Phasu Sairuamyat ◽  
Weerachart Tangchirapat ◽  
Sutat Leelataviwat ◽  
...  

This article presents an alternative method for the long-term monitoring of heritage pagodas in Thailand. In this method, terrestrial laser scanning (TLS) is used in combination with permanent survey markers. The Wat (temple) Krachee in the Ayutthaya Province of Thailand was chosen as a case study. This temple has several fantastic elements, including an inverted bell-shaped pagoda, two intertwined trees growing within it, and a chamber inside the pagoda. The preservation team working on the pagoda encountered a challenging problem and faced a decision to trim or not to trim the tree since it has a long-term effect on the pagoda’s structural stability. A high-accuracy terrestrial laser scanner was used to collect three-dimensional point cloud data. Permanent survey markers were constructed in 2018 to be used in long-term monitoring. The 3D surveying of the temple and the monitoring of the pagoda were carried out in five sessions during a period ending in 2020. A point cloud data analysis was performed to obtain the current dimensions, a displacement analysis, and the pagoda leaning angle. The results revealed that the terrestrial laser scanner is a high-performance piece of equipment offering efficient evaluation and long-term monitoring. However, in this study, permanent survey markers were also required as a benchmark for constraining each monitoring session. The 3D point cloud models could be matched with the assumption model elements to evaluate the damaged shape and to determine the original form. The significant elements of an inverted bell-shaped pagoda were investigated. Trimming the tree was found to cause the leaning angle of the pagoda to decrease. An equation was developed for predicting the leaning angle of the Wat Krachee pagoda for preservation and restoration planning in the future. From the results of this study, it is recommended that periodic monitoring should continue in order to preserve Thai pagodas in their original forms.


2020 ◽  
Vol 12 (19) ◽  
pp. 8108
Author(s):  
Namhyuk Ham ◽  
Baek-Il Bae ◽  
Ok-Kyung Yuh

This study proposed a phased reverse engineering framework to construct cultural heritage archives using laser scanning and a building information model (BIM). This framework includes acquisition of point cloud data through laser scanning. Unlike previous studies, in this study, a standard for authoring BIM data was established through comparative analysis of existing archives and point cloud data, and a method of building valuable BIM data as an information model was proposed. From a short-term perspective, additional archives such as member lists and drawings can be extracted from BIM data built as an information model. In addition, from a long-term perspective, a scenario for using the cultural heritage archive consisting of historical records, point cloud data, and BIM data was presented. These scenarios were verified through a case study. In particular, through the BIM data building and management method, relatively very light BIM data (499 MB) could be built based on point cloud data (more than 917 MB), which is a large amount of data.


Sign in / Sign up

Export Citation Format

Share Document