scholarly journals RETRIEVAL OF MINERAL ABUNDANCES OF THE DELTA REGION IN EBERSWALDE, MARS

Author(s):  
X. Wu ◽  
X. Zhang ◽  
H. Lin

Eberswalde Crater, a hotspot of Mars exploration, possesses an unambiguous hydrological system. However, little research has been performed on the large-scale mineral abundances retrieval in this region. Hence, we employed hyperspectral unmixing technology to quantitatively retrieve mineral abundances of the delta region in Eberswalde. In this paper, the single-scattering albedos were calculated by the Hapke bidirectional reflectance function from Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) data (FRT000060DD) and CRISM spectral library respectively, and a sparse unmixing algorithm was adopted to quantitatively retrieve mineral abundances. The abundance maps show that there are six kinds of minerals (pyroxene, olivine, plagioclase, siderite, diaspore, and tremolite). By comparing minerals spectra obtained from images with corresponding spectra in spectral library, we found the similar trend in both curves. Besides, the mineral abundance maps derived in this study agree well spatially with CRISM parameter maps. From the perspective of mineralogy, the instability of pyroxene and olivine indicates the area in which they distribute is close to provenance, and the original provenance is ultrabasic rock (e.g. peridotite) and basic rock (e.g. gabbro), respectively. And minerals, existing in the area of alluvial fan, also distribute in the outside of alluvial fan, which might be caused by fluid transportation.

2021 ◽  
Vol 13 (13) ◽  
pp. 2559
Author(s):  
Daniele Cerra ◽  
Miguel Pato ◽  
Kevin Alonso ◽  
Claas Köhler ◽  
Mathias Schneider ◽  
...  

Spectral unmixing represents both an application per se and a pre-processing step for several applications involving data acquired by imaging spectrometers. However, there is still a lack of publicly available reference data sets suitable for the validation and comparison of different spectral unmixing methods. In this paper, we introduce the DLR HyperSpectral Unmixing (DLR HySU) benchmark dataset, acquired over German Aerospace Center (DLR) premises in Oberpfaffenhofen. The dataset includes airborne hyperspectral and RGB imagery of targets of different materials and sizes, complemented by simultaneous ground-based reflectance measurements. The DLR HySU benchmark allows a separate assessment of all spectral unmixing main steps: dimensionality estimation, endmember extraction (with and without pure pixel assumption), and abundance estimation. Results obtained with traditional algorithms for each of these steps are reported. To the best of our knowledge, this is the first time that real imaging spectrometer data with accurately measured targets are made available for hyperspectral unmixing experiments. The DLR HySU benchmark dataset is openly available online and the community is welcome to use it for spectral unmixing and other applications.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Harshi Weerakoon ◽  
Jeremy Potriquet ◽  
Alok K. Shah ◽  
Sarah Reed ◽  
Buddhika Jayakody ◽  
...  

AbstractData independent analysis (DIA) exemplified by sequential window acquisition of all theoretical mass spectra (SWATH-MS) provides robust quantitative proteomics data, but the lack of a public primary human T-cell spectral library is a current resource gap. Here, we report the generation of a high-quality spectral library containing data for 4,833 distinct proteins from human T-cells across genetically unrelated donors, covering ~24% proteins of the UniProt/SwissProt reviewed human proteome. SWATH-MS analysis of 18 primary T-cell samples using the new human T-cell spectral library reliably identified and quantified 2,850 proteins at 1% false discovery rate (FDR). In comparison, the larger Pan-human spectral library identified and quantified 2,794 T-cell proteins in the same dataset. As the libraries identified an overlapping set of proteins, combining the two libraries resulted in quantification of 4,078 human T-cell proteins. Collectively, this large data archive will be a useful public resource for human T-cell proteomic studies. The human T-cell library is available at SWATHAtlas and the data are available via ProteomeXchange (PXD019446 and PXD019542) and PeptideAtlas (PASS01587).


Radiocarbon ◽  
2006 ◽  
Vol 48 (3) ◽  
pp. 435-450 ◽  
Author(s):  
A J Timothy Jull ◽  
Marten Geertsema

We present results of radiocarbon dating of charcoal from paleosols and buried charcoal horizons in a unique sequence, which potentially records the last 36,000 yr, from a fan at Bear Flat, British Columbia (BC) (56°16'51’N, 121°13'39”W). Evidence for forest-fire charcoal is found over the last 13,500 ± 110 14C yr before present (BP) or 16,250 ± 700 cal BP. The study area is located east of the Rocky Mountains in an area that was ice-free at least 13,970 ± 170 14C yr BP (17,450–16,150 cal BP) ago. The latest evidence of fire is during the Medieval Warm Period (MWP). The charcoal ages show a periodicity in large fires on a millennial scale through the Holocene—an average of 4 fires per thousand years. Higher fire frequencies are observed between 2200 to 2800 cal BP, ∼5500 and ∼6000 cal BP, ∼7500 to 8200 cal BP, and 9000 to 10,000 cal BP. These intervals also appear to be times of above-average aggradation of the fan. We conclude that fire frequency is related to large-scale climatic events on a millennial time scale.


BMC Genomics ◽  
2019 ◽  
Vol 20 (S9) ◽  
Author(s):  
Yang-Ming Lin ◽  
Ching-Tai Chen ◽  
Jia-Ming Chang

Abstract Background Tandem mass spectrometry allows biologists to identify and quantify protein samples in the form of digested peptide sequences. When performing peptide identification, spectral library search is more sensitive than traditional database search but is limited to peptides that have been previously identified. An accurate tandem mass spectrum prediction tool is thus crucial in expanding the peptide space and increasing the coverage of spectral library search. Results We propose MS2CNN, a non-linear regression model based on deep convolutional neural networks, a deep learning algorithm. The features for our model are amino acid composition, predicted secondary structure, and physical-chemical features such as isoelectric point, aromaticity, helicity, hydrophobicity, and basicity. MS2CNN was trained with five-fold cross validation on a three-way data split on the large-scale human HCD MS2 dataset of Orbitrap LC-MS/MS downloaded from the National Institute of Standards and Technology. It was then evaluated on a publicly available independent test dataset of human HeLa cell lysate from LC-MS experiments. On average, our model shows better cosine similarity and Pearson correlation coefficient (0.690 and 0.632) than MS2PIP (0.647 and 0.601) and is comparable with pDeep (0.692 and 0.642). Notably, for the more complex MS2 spectra of 3+ peptides, MS2PIP is significantly better than both MS2PIP and pDeep. Conclusions We showed that MS2CNN outperforms MS2PIP for 2+ and 3+ peptides and pDeep for 3+ peptides. This implies that MS2CNN, the proposed convolutional neural network model, generates highly accurate MS2 spectra for LC-MS/MS experiments using Orbitrap machines, which can be of great help in protein and peptide identifications. The results suggest that incorporating more data for deep learning model may improve performance.


2020 ◽  
Vol 12 (6) ◽  
pp. 1033
Author(s):  
Yasuhiro Tanaka

Meltwater drainage onset (DO) timing and drainage duration (DD) related to snowmelt-water redistribution are both important for understanding not only the Arctic energy and heat budgets but also the salt/heat balance of the mixed layer in the ocean and sea-ice ecosystem. We present DO and DD as determined from the time series of Advanced Microwave Scanning Radiometer-Earth observing system (AMSR-E) melt pond fraction (MPF) estimates in an area with Canadian landfast ice. To address the lack of evaluation on a day-by-day basis for the AMSR-E MPF estimate, we first compared AMSR-E MPF with the daily Medium Resolution Imaging Spectrometer (MERIS) MPF. The AMSR-E MPF estimate correlates significantly with the MERIS MPF (r = 0.73–0.83). The estimate has a product quality similar to the MERIS MPF only when the albedo is around 0.5–0.7 and a positive bias of up to 10% in areas with an albedo of 0.7–0.9, including melting snow. The DO/DD estimates are determined by using a polynomial regression curve fitted on the time series of the AMSR-E MPF. The DOs/DDs from time series of the AMSR-E and MERIS MPFs are compared, revealing consistency in both DD and DO. The DO timing from 2006 to 2011 is correlated with melt onset timing. To the best of our knowledge, our study provides the first large-scale information on both DO timing and DD.


1986 ◽  
Vol 32 (112) ◽  
pp. 475-485 ◽  
Author(s):  
G.S. Boulton ◽  
U. Spring

AbstractThe melting of ice and the subsequent production of regelation ice from the melt water in a large-scale closed system beneath sub-polar and polar glaciers produces progressive fractionation between the melt water and the regelation ice derived from it. A theory is developed which predicts the change of isotopic composition in regelation ice in a subglacial zone of freezing and in the water from which it is derived. The theory is tested against data from the Byrd Station bore hole in West Antarctica, and applied to explain features of the isotopic composition in several other glaciers where thick sequences of regelation ice have formed.The principal conclusions are:1. Basal isotopic profiles can be used to reconstruct important features of a glacier’s hydrological system.2. Isotopic profiles in basal regelation ice do not simply reflect isotopic characteristics of ancient atmospheres but also, by using the theory, some of the isotopic characteristics of the normal glacier ice which was destroyed by melting and subsequently produced regelation ice can be reconstructed. Basal regelation ice at Byrd Station reflects an original ice source isotopically colder than the overlying normal ice, and may have formed during the penultimate glacial period, equivalent to stage 6 of the oceanic record.3. The subglacially derived debris typically found in basal regelation ice gives a complex strain response to a changing pattern of stresses produced by flow over an irregular subjacent bed. Thus, complex tectonic structures in this ice produce highly variable isotopic profiles. However, its gross isotopic characteristics can still be used to reconstruct some of its history. A sharp change in isotopic values tends to occur at the upper limit of basal regelation ice, the nature of which depends on the style and thickness of tectonic disturbance.4. Isotopic profiles in basal ice can be used to distinguish normal glacier ice from regelation ice, and give strong support to the view that regelation is the major process by which debris is incorporated into the base of a glacier.


2006 ◽  
Vol 6 (10) ◽  
pp. 2911-2925 ◽  
Author(s):  
D. Chand ◽  
P. Guyon ◽  
P. Artaxo ◽  
O. Schmid ◽  
G. P. Frank ◽  
...  

Abstract. As part of the Large Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall and Climate (LBA-SMOCC) campaign, detailed surface and airborne aerosol measurements were performed over the Amazon Basin during the dry to wet season from 16 September to 14 November 2002. Optical and physical properties of aerosols at the surface, and in the boundary layer (BL) and free troposphere (FT) during the dry season are discussed in this article. Carbon monoxide (CO) is used as a tracer for biomass burning emissions. At the surface, good correlation among the light scattering coefficient (σs at 545 nm), PM2.5, and CO indicates that biomass burning is the main source of aerosols. Accumulation of haze during some of the large-scale biomass burning events led to high PM2.5 (225 μg m−3), σs (1435 Mm−1), aerosol optical depth at 500 nm (3.0), and CO (3000 ppb). A few rainy episodes reduced the PM2.5, number concentration (CN) and CO concentration by two orders of magnitude. The correlation analysis between σs and aerosol optical thickness shows that most of the optically active aerosols are confined to a layer with a scale height of 1617 m during the burning season. This is confirmed by aircraft profiles. The average mass scattering and absorption efficiencies (545 nm) for small particles (diameter Dp<1.5 μm) at surface level are found to be 5.0 and 0.33 m2 g−1, respectively, when relating the aerosol optical properties to PM2.5 aerosols. The observed mean single scattering albedo (ωo at 545 nm) for submicron aerosols at the surface is 0.92±0.02. The light scattering by particles (Δσs/Δ CN) increase 2–10 times from the surface to the FT, most probably due to the combined affects of coagulation and condensation.


2015 ◽  
Vol 8 (4) ◽  
pp. 1719-1731 ◽  
Author(s):  
W. H. Davies ◽  
P. R. J. North

Abstract. We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.


Sign in / Sign up

Export Citation Format

Share Document