scholarly journals IMPROVING THE LAND SURFACE GENERAL DROUGHT INDEX MODEL

Author(s):  
A. H. Ngandam Mfondoum ◽  
P. G. Gbetkom ◽  
R. Cooper ◽  
S. Hakdaoui ◽  
M. B. Mansour Badamassi

Abstract. Drought affects all human activities and ecosystems. Nearly 40 percent of the world’s population inhabit Drylands, and they depend on agriculture for their food, security and livelihoods. Among the remote sensing indices developed, the Land Surface General Drought Index (LSGDI) was recently proposed. This paper proposes an improved model of LSGDI to face the issue of drought in semi-arid and arid regions. The experiment was conducted for the Maga’s floodplain, in North-Cameroon. The method uses satellite images of Landsat in 1987, 2003 and 2018, for January and March or April, corresponding to the middle and the end of the dry season. A Vegetation Moisture Index (VMI) and a Normalized Difference Soil Drought Index (NDSoDI) are both developed. On an orthogonal plan, their projections give a drought line that expresses the improved LSGDI (LSGDI2) as the root sum square of the NDSoDI and the VMI. The LSGDI2 results are ranged in [0.09 – 0.14] interval, which is used to define the threshold and ease the qualifiers for drought classes. The visual patterns easily match the sandy areas of the original Landsat images with the highest values, while the vegetation and water areas match the lowest values. Compared with the LSGDI and Second Modified Perpendicular drought Index (MPDI1), the new index reflectance values are higher. Finally, although LSGDI2 curve’s evolution follows the NDSoDI one at 94%, the new spectral index values depends on the both components, helping to map highest values of drought and moisture in Maga’s floodplain, for a sustainable rice culture expansion.

2019 ◽  
Vol 65 (No. 1) ◽  
pp. 27-32 ◽  
Author(s):  
Marjan Firoozy Nejad ◽  
Amin Zoratipour

Riparian forest plays a significant role in ecosystems. Also, research on land surface temperature and soil moisture is essential in earth science and forest studies. Because measuring methods are difficult to apply in large areas and especially in dense forests, in this study normalized difference moisture index (NDMI) and land surface temperature (LST) were estimated using the infrared thermal method by data of Landsat 8 and Moderate Resolution Imaging Spectroradiometer (MODIS) in the Karun riparian forest that is of ecological importance in the Khuzestan province of Iran. The results showed that the accuracy for estimated NDMI and LST was appropriate (root mean square error = 3.45). In addition, the used polynomial support vector machine algorithm for classification by four classes (forest, agriculture, river, and others) and the validity of classification in these areas were suitable (overall accuracy = 95%, kappa coefficient = 0.93). Also, the NDMI index was dependent on changes in LST and Pearson coefficients were 0.94 and 0.84 for Landsat 8 and MODIS data, respectively. The average temperature of the area was obtained as 43.22 and 42.77 for Landsat 8 and MODIS, respectively. Finally, more protection of this forest against LST enhancement and reduction in soil moisture is necessary.


2021 ◽  
Vol 13 (14) ◽  
pp. 2730
Author(s):  
Animesh Chandra Das ◽  
Ryozo Noguchi ◽  
Tofael Ahamed

Drought is one of the detrimental climatic factors that affects the productivity and quality of tea by limiting the growth and development of the plants. The aim of this research was to determine drought stress in tea estates using a remote sensing technique with the standardized precipitation index (SPI). Landsat 8 OLI/TIRS images were processed to measure the land surface temperature (LST) and soil moisture index (SMI). Maps for the normalized difference moisture index (NDMI), normalized difference vegetation index (NDVI), and leaf area index (LAI), as well as yield maps, were developed from Sentinel-2 satellite images. The drought frequency was calculated from the classification of droughts utilizing the SPI. The results of this study show that the drought frequency for the Sylhet station was 38.46% for near-normal, 35.90% for normal, and 25.64% for moderately dry months. In contrast, the Sreemangal station demonstrated frequencies of 28.21%, 41.02%, and 30.77% for near-normal, normal, and moderately dry months, respectively. The correlation coefficients between the SMI and NDMI were 0.84, 0.77, and 0.79 for the drought periods of 2018–2019, 2019–2020 and 2020–2021, respectively, indicating a strong relationship between soil and plant canopy moisture. The results of yield prediction with respect to drought stress in tea estates demonstrate that 61%, 60%, and 60% of estates in the study area had lower yields than the actual yield during the drought period, which accounted for 7.72%, 11.92%, and 12.52% yield losses in 2018, 2019, and 2020, respectively. This research suggests that satellite remote sensing with the SPI could be a valuable tool for land use planners, policy makers, and scientists to measure drought stress in tea estates.


2021 ◽  
Vol 13 (7) ◽  
pp. 1340
Author(s):  
Shuailong Feng ◽  
Shuguang Liu ◽  
Lei Jing ◽  
Yu Zhu ◽  
Wende Yan ◽  
...  

Highways provide key social and economic functions but generate a wide range of environmental consequences that are poorly quantified and understood. Here, we developed a before–during–after control-impact remote sensing (BDACI-RS) approach to quantify the spatial and temporal changes of environmental impacts during and after the construction of the Wujing Highway in China using three buffer zones (0–100 m, 100–500 m, and 500–1000 m). Results showed that land cover composition experienced large changes in the 0–100 m and 100–500 m buffers while that in the 500–1000 m buffer was relatively stable. Vegetation and moisture conditions, indicated by the normalized difference vegetation index (NDVI) and the normalized difference moisture index (NDMI), respectively, demonstrated obvious degradation–recovery trends in the 0–100 m and 100–500 m buffers, while land surface temperature (LST) experienced a progressive increase. The maximal relative changes as annual means of NDVI, NDMI, and LST were about −40%, −60%, and 12%, respectively, in the 0–100m buffer. Although the mean values of NDVI, NDMI, and LST in the 500–1000 m buffer remained relatively stable during the study period, their spatial variabilities increased significantly after highway construction. An integrated environment quality index (EQI) showed that the environmental impact of the highway manifested the most in its close proximity and faded away with distance. Our results showed that the effect distance of the highway was at least 1000 m, demonstrated from the spatial changes of the indicators (both mean and spatial variability). The approach proposed in this study can be readily applied to other regions to quantify the spatial and temporal changes of disturbances of highway systems and subsequent recovery.


2020 ◽  
Vol 12 (16) ◽  
pp. 2587
Author(s):  
Yan Nie ◽  
Ying Tan ◽  
Yuqin Deng ◽  
Jing Yu

As a basic agricultural parameter in the formation, transformation, and consumption of surface water resources, soil moisture has a very important influence on the vegetation growth, agricultural production, and healthy operation of regional ecosystems. The Aksu river basin is a typical semi-arid agricultural area which seasonally suffers from water shortage. Due to the lack of knowledge on soil moisture change, the water management and decision-making processes have been a difficult issue for local government. Therefore, soil moisture monitoring by remote sensing became a reasonable way to schedule crop irrigation and evaluate the irrigation efficiency. Compared to in situ measurements, the use of remote sensing for the monitoring of soil water content is convenient and can be repetitively applied over a large area. To verify the applicability of the typical drought index to the rapid acquisition of soil moisture in arid and semi-arid regions, this study simulated, compared, and validated the effectiveness of soil moisture inversion. GF-1 WFV images, Landsat 8 OLI images, and the measured soil moisture data were used to determine the Perpendicular Drought Index (PDI), the Modified Perpendicular Drought Index (MPDI), and the Vegetation Adjusted Perpendicular Drought Index (VAPDI). First, the determination coefficients of the correlation analyses on the PDI, MPDI, VAPDI, and measured soil moisture in the 0–10, 10–20, and 20–30 cm depth layers based on the GF-1 WFV and Landsat 8 OLI images were good. Notably, in the 0–10 cm depth layers, the average determination coefficient was 0.68; all models met the accuracy requirements of soil moisture inversion. Both indicated that the drought indices based on the Near Infrared (NIR)-Red spectral space derived from the optical remote sensing images are more sensitive to soil moisture near the surface layer; however, the accuracy of retrieving the soil moisture in deep layers was slightly lower in the study area. Second, in areas of vegetation coverage, MPDI and VAPDI had a higher inversion accuracy than PDI. To a certain extent, they overcame the influence of mixed pixels on the soil moisture spectral information. VAPDI modified by Perpendicular Vegetation Index (PVI) was not susceptible to vegetation saturation and, thus, had a higher inversion accuracy, which makes it performs better than MPDI’s in vegetated areas. Third, the spatial heterogeneity of the soil moisture retrieved by the GF-1 WFV and Landsat 8 OLI image were similar. However, the GF-1 WFV images were more sensitive to changes in the soil moisture, which reflected the actual soil moisture level covered by different vegetation. These results provide a practical reference for the dynamic monitoring of surface soil moisture, obtaining agricultural information and agricultural condition parameters in arid and semi-arid regions.


2011 ◽  
Vol 24 (8) ◽  
pp. 2025-2044 ◽  
Author(s):  
Martha C. Anderson ◽  
Christopher Hain ◽  
Brian Wardlow ◽  
Agustin Pimstein ◽  
John R. Mecikalski ◽  
...  

Abstract The reliability of standard meteorological drought indices based on measurements of precipitation is limited by the spatial distribution and quality of currently available rainfall data. Furthermore, they reflect only one component of the surface hydrologic cycle, and they cannot readily capture nonprecipitation-based moisture inputs to the land surface system (e.g., irrigation) that may temper drought impacts or variable rates of water consumption across a landscape. This study assesses the value of a new drought index based on remote sensing of evapotranspiration (ET). The evaporative stress index (ESI) quantifies anomalies in the ratio of actual to potential ET (PET), mapped using thermal band imagery from geostationary satellites. The study investigates the behavior and response time scales of the ESI through a retrospective comparison with the standardized precipitation indices and Palmer drought index suite, and with drought classifications recorded in the U.S. Drought Monitor for the 2000–09 growing seasons. Spatial and temporal correlation analyses suggest that the ESI performs similarly to short-term (up to 6 months) precipitation-based indices but can be produced at higher spatial resolution and without requiring any precipitation data. Unique behavior is observed in the ESI in regions where the evaporative flux is enhanced by moisture sources decoupled from local rainfall: for example, in areas of intense irrigation or shallow water table. Normalization by PET serves to isolate the ET signal component responding to soil moisture variability from variations due to the radiation load. This study suggests that the ESI is a useful complement to the current suite of drought indicators, with particular added value in parts of the world where rainfall data are sparse or unreliable.


2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.


2021 ◽  
Author(s):  
Hao Yang ◽  
Zhiyuan Fang ◽  
Cheng Li ◽  
Xu Deng ◽  
Kunming Xing ◽  
...  

Abstract. From August 4th to 30th, 2020 and from November 27th to December 25th, 2020, a self-developed radiosonde balloon system was used to observe high-altitude atmospheric optical turbulence at three sites in northwestern China, and an improved model based on the observational data was established. Through comparative analysis of the observational data and the improved model, the distribution characteristics of atmospheric optical turbulence under the combined action of different meteorological parameters and different landform features in different seasons were obtained. The improved model can show the variation of the detailed characteristics of turbulence with the height distribution, and the degree of correlation with the measured values is above 0.82. The improved model can provide a theoretical basis and supporting data for turbulence estimation and forecasting in northwestern China.


2019 ◽  
Vol 11 (20) ◽  
pp. 2369 ◽  
Author(s):  
Ahmed M. El Kenawy ◽  
Mohamed E. Hereher ◽  
Sayed M. Robaa

Space-based data have provided important advances in understanding climate systems and processes in arid and semi-arid regions, which are hot-spot regions in terms of climate change and variability. This study assessed the performance of land surface temperatures (LSTs), retrieved from the Moderate-Resolution Imaging Spectroradiometer (MODIS) Aqua platform, over Egypt. Eight-day composites of daytime and nighttime LST data were aggregated and validated against near-surface seasonal and annual observational maximum and minimum air temperatures using data from 34 meteorological stations spanning the period from July 2002 to June 2015. A variety of accuracy metrics were employed to evaluate the performance of LST, including the bias, normalized root-mean-square error (nRMSE), Yule–Kendall (YK) skewness measure, and Spearman’s rho coefficient. The ability of LST to reproduce the seasonal cycle, anomalies, temporal variability, and the distribution of warm and cold tails of observational temperatures was also evaluated. Overall, the results indicate better performance of the nighttime LSTs compared to the daytime LSTs. Specifically, while nighttime LST tended to underestimate the minimum air temperature during winter, spring, and autumn on the order of −1.3, −1.2, and −1.4 °C, respectively, daytime LST markedly overestimated the maximum air temperature in all seasons, with values mostly above 5 °C. Importantly, the results indicate that the performance of LST over Egypt varies considerably as a function of season, lithology, and land use. LST performs better during transitional seasons (i.e., spring and autumn) compared to solstices (i.e., winter and summer). The varying interactions and feedbacks between the land surface and the atmosphere, especially the differences between sensible and latent heat fluxes, contribute largely to these seasonal variations. Spatially, LST performs better in areas with sandstone formations and quaternary sediments and, conversely, shows lower accuracy in regions with limestone, igneous, and metamorphic rocks. This behavior can be expected in hybrid arid and semi-arid regions like Egypt, where bare rocks contribute to the majority of the Egyptian territory, with a lack of vegetation cover. The low surface albedo of igneous and limestone rocks may explain the remarkable overestimation of daytime temperature in these regions, compared to the bright formations of higher surface albedo (i.e., sandy deserts and quaternary rocks). Overall, recalling the limited coverage of meteorological stations in Egypt, this study demonstrates that LST obtained from the MODIS product can be trustworthily employed as a surrogate for or a supplementary source to near-surface measurements, particularly for minimum air temperature. On the other hand, some bias correction techniques should be applied to daytime LSTs. In general, the fine space-based climatic information provided by MODIS LST can be used for a detailed spatial assessment of climate variability in Egypt, with important applications in several disciplines such as water resource management, hydrological modeling, agricultural management and planning, urban climate, biodiversity, and energy consumption, amongst others. Also, this study can contribute to a better understanding of the applications of remote sensing technology in assessing climatic feedbacks and interactions in arid and semi-arid regions, opening new avenues for developing innovative algorithms and applications specifically addressing issues related to these regions.


Sign in / Sign up

Export Citation Format

Share Document