scholarly journals MOVING SHIP DETECTION AND MOVEMENT PREDICTION IN REMOTE SENSING VIDEOS

Author(s):  
Y. Wang ◽  
H. Cheng ◽  
X. Zhou ◽  
W. Luo ◽  
H. Zhang

Abstract. With the rapid development of remote sensing technology, it is possible to obtain continuous video data from outer space successfully. It is of great significance in military and civilian fields to detect moving objects from the remote sensing image sequence and predict their movements. In recent years, this issue has attracted more and more attention. However, researches on moving object detection and movement prediction in high-resolution remote sensing videos are still in its infancy, which is worthy of further study. In this paper, we propose a ship detection and movement prediction method based on You-Only-Look-Once (YOLO) v3 and Simple Online and Realtime Tracking (SORT). Original YOLO v3 is improved by multi-frame training to fully utilize the information of continuous frames in a fusion way. The simple and practical multiple object tracking algorithm SORT is used to recognize multiple targets detected by multi-frame YOLO v3 model and obtain their coordinates. These coordinates are fitted by the least square method to get the trajectories of multiple targets. We take the derivative of each trajectory to obtain the real-time movement direction and velocity of the detected ships. Experiments are performed on multi-spectral remote sensing images selected on Google Earth, as well as real multi-spectral remote sensing videos captured by Jilin-1 satellite. Experimental results validate the effectiveness of our method for moving ship detection and movement prediction. It shows a feasible way for efficient interpretation and information extraction of new remote sensing video data.

2020 ◽  
Vol 12 (20) ◽  
pp. 3316 ◽  
Author(s):  
Yulian Zhang ◽  
Lihong Guo ◽  
Zengfa Wang ◽  
Yang Yu ◽  
Xinwei Liu ◽  
...  

Intelligent detection and recognition of ships from high-resolution remote sensing images is an extraordinarily useful task in civil and military reconnaissance. It is difficult to detect ships with high precision because various disturbances are present in the sea such as clouds, mist, islands, coastlines, ripples, and so on. To solve this problem, we propose a novel ship detection network based on multi-layer convolutional feature fusion (CFF-SDN). Our ship detection network consists of three parts. Firstly, the convolutional feature extraction network is used to extract ship features of different levels. Residual connection is introduced so that the model can be designed very deeply, and it is easy to train and converge. Secondly, the proposed network fuses fine-grained features from shallow layers with semantic features from deep layers, which is beneficial for detecting ship targets with different sizes. At the same time, it is helpful to improve the localization accuracy and detection accuracy of small objects. Finally, multiple fused feature maps are used for classification and regression, which can adapt to ships of multiple scales. Since the CFF-SDN model uses a pruning strategy, the detection speed is greatly improved. In the experiment, we create a dataset for ship detection in remote sensing images (DSDR), including actual satellite images from Google Earth and aerial images from electro-optical pod. The DSDR dataset contains not only visible light images, but also infrared images. To improve the robustness to various sea scenes, images under different scales, perspectives and illumination are obtained through data augmentation or affine transformation methods. To reduce the influence of atmospheric absorption and scattering, a dark channel prior is adopted to solve atmospheric correction on the sea scenes. Moreover, soft non-maximum suppression (NMS) is introduced to increase the recall rate for densely arranged ships. In addition, better detection performance is observed in comparison with the existing models in terms of precision rate and recall rate. The experimental results show that the proposed detection model can achieve the superior performance of ship detection in optical remote sensing image.


2021 ◽  
Vol 13 (5) ◽  
pp. 361-371
Author(s):  
Yu Wang ◽  
G. Rajesh ◽  
X. Mercilin Raajini ◽  
N. Kritika ◽  
A. Kavinkumar ◽  
...  

The recent advancement in remote sensing technologies has resulted in the availability of different imaging modes and higher resolution satellite images. Accessibility of these remote sensing or satellite images, automatic ship detection and tracking has become an important research topic in the field of maritime surveillance. In this paper, a novel method for ship detection using satellite images is proposed. First the preprocessing is carried out to remove the noise from the images using Ship Detection and Tracking (SDT) filter. Then, the land masking (sea-land area separation) and cloud masking is carried out based on the gradient feature extraction using SDT edge detection, along with SDT segmentation. Finally, the ships are identified using the Machine Learning (ML) classifiers like Support Vector Machine (SVM), Random Forest Classifier (RFC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), KNN, and Gaussian Naïve Bayes-based classifier based on the features extracted from Histogram of Oriented Gradients (HOG). The proposed work is cross validated using the Google earth data. Performance of our proposed method is evaluated using the recall and the precision values. Further, for tracking ships, an improved multiple hypothesis tracking (MHT) algorithm is proposed and tested using the Kaggle dataset.


Author(s):  
Jumah Ibrhim Ain, Faten Hamed Nahhas Jumah Ibrhim Ain, Faten Hamed Nahhas

  Identifying urban growth trends contributes to sound decision-making, planning and clear scenarios for future development (Altwaijri, 1438-AH). The research uses the techniques of remote sensing and geographic information systems (GIS) to study the urban growth of Riyadh from the first nucleus until 2020 and to determine the growth trends, causes and physical areas that arose during this period. Space images were used and analyzed by the USGS and Google Earth program using ArcGIS Desktop 10.8. The city's initial growth was in the area around Safa Square and the surrounding area, which developed through various stages of history, especially after it became the capital of Saudi Arabia and experienced rapid development from 2000 to 2020. The study came in two chapters, the first on about the stages of development and evolution for Riyadh, then the second chapter, to analyze the satellite images to show the trends of the city's development over the last twenty years, followed by the conclusions and recommendations.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2271 ◽  
Author(s):  
Fukun Bi ◽  
Jinyuan Hou ◽  
Liang Chen ◽  
Zhihua Yang ◽  
Yanping Wang

Ship detection plays a significant role in military and civil fields. Although some state-of-the-art detection methods, based on convolutional neural networks (CNN) have certain advantages, they still cannot solve the challenge well, including the large size of images, complex scene structure, a large amount of false alarm interference, and inshore ships. This paper proposes a ship detection method from optical remote sensing images, based on visual attention enhanced network. To effectively reduce false alarm in non-ship area and improve the detection efficiency from remote sensing images, we developed a light-weight local candidate scene network( L 2 CSN) to extract the local candidate scenes with ships. Then, for the selected local candidate scenes, we propose a ship detection method, based on the visual attention DSOD(VA-DSOD). Here, to enhance the detection performance and positioning accuracy of inshore ships, we both extract semantic features, based on DSOD and embed a visual attention enhanced network in DSOD to extract the visual features. We test the detection method on a large number of typical remote sensing datasets, which consist of Google Earth images and GaoFen-2 images. We regard the state-of-the-art method [sliding window DSOD (SW+DSOD)] as a baseline, which achieves the average precision (AP) of 82.33%. The AP of the proposed method increases by 7.53%. The detection and location performance of our proposed method outperforms the baseline in complex remote sensing scenes.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


Author(s):  
Nikifor Ostanin ◽  
Nikifor Ostanin

Coastal zone of the Eastern Gulf of Finland is subjected to essential natural and anthropogenic impact. The processes of abrasion and accumulation are predominant. While some coastal protection structures are old and ruined the problem of monitoring and coastal management is actual. Remotely sensed data is important component of geospatial information for coastal environment research. Rapid development of modern satellite remote sensing techniques and data processing algorithms made this data essential for monitoring and management. Multispectral imagers of modern high resolution satellites make it possible to produce advanced image processing, such as relative water depths estimation, sea-bottom classification and detection of changes in shallow water environment. In the framework of the project of development of new coast protection plan for the Kurortny District of St.-Petersburg a series of archival and modern satellite images were collected and analyzed. As a result several schemes of underwater parts of coastal zone and schemes of relative bathymetry for the key areas were produced. The comparative analysis of multi-temporal images allow us to reveal trends of environmental changes in the study areas. This information, compared with field observations, shows that remotely sensed data is useful and efficient for geospatial planning and development of new coast protection scheme.


2021 ◽  
Vol 13 (4) ◽  
pp. 641
Author(s):  
Gopal Ramdas Mahajan ◽  
Bappa Das ◽  
Dayesh Murgaokar ◽  
Ittai Herrmann ◽  
Katja Berger ◽  
...  

Conventional methods of plant nutrient estimation for nutrient management need a huge number of leaf or tissue samples and extensive chemical analysis, which is time-consuming and expensive. Remote sensing is a viable tool to estimate the plant’s nutritional status to determine the appropriate amounts of fertilizer inputs. The aim of the study was to use remote sensing to characterize the foliar nutrient status of mango through the development of spectral indices, multivariate analysis, chemometrics, and machine learning modeling of the spectral data. A spectral database within the 350–1050 nm wavelength range of the leaf samples and leaf nutrients were analyzed for the development of spectral indices and multivariate model development. The normalized difference and ratio spectral indices and multivariate models–partial least square regression (PLSR), principal component regression, and support vector regression (SVR) were ineffective in predicting any of the leaf nutrients. An approach of using PLSR-combined machine learning models was found to be the best to predict most of the nutrients. Based on the independent validation performance and summed ranks, the best performing models were cubist (R2 ≥ 0.91, the ratio of performance to deviation (RPD) ≥ 3.3, and the ratio of performance to interquartile distance (RPIQ) ≥ 3.71) for nitrogen, phosphorus, potassium, and zinc, SVR (R2 ≥ 0.88, RPD ≥ 2.73, RPIQ ≥ 3.31) for calcium, iron, copper, boron, and elastic net (R2 ≥ 0.95, RPD ≥ 4.47, RPIQ ≥ 6.11) for magnesium and sulfur. The results of the study revealed the potential of using hyperspectral remote sensing data for non-destructive estimation of mango leaf macro- and micro-nutrients. The developed approach is suggested to be employed within operational retrieval workflows for precision management of mango orchard nutrients.


Sign in / Sign up

Export Citation Format

Share Document