scholarly journals THE RELIABILITY ASSESSMENT OF THE TLS REGISTRATION METHODS – THE CASE STUDY OF THE ROYAL CASTLE IN WARSAW

Author(s):  
J. Markiewicz ◽  
S. Łapiński ◽  
A. Bocheńska ◽  
P. Kot

Abstract. Modern measurement technologies are commonly applied to monitor and preserve the cultural heritage as it is an integral part of modern societies. The Terrestrial Laser Scanning (TLS) method is one of the common technologies investigated by the researchers for accurate data acquisition and processing required for architectural documentation. In recent years, many methods were developed for TLS data registration to improve the processing time and accuracy of the bundle adjustment. The aim of this research is to compare the existing TLS target-based registration methods and compare them with the proposed novel method based on the reliability assessment- the robustness analysis. The novel feature-based approach also includes 2D detectors, which were applied to the TLS data converted into spherical images. Measurements were carried out at the Royal Castle in Warsaw using TLS Z+F 5006H and total station Leica TCRP1202. The collected data was analysed using existing software Z+F LaserControl, LupoScan and developed the application to perform 2D + 1H / 3D registration. The main results demonstrated that the proposed method for TLS registration removed the outliers that could not be eliminated by the deviation analysis on control and check points. The accuracy of TLS registration increased with a RMSE difference between 0.1 mm and 3.7 mm in comparison to existing methods. Furthermore, the accuracy of the results from 2D detectors was improved with relative orientation RMSE ≤ 2.1 mm and equivalent for control and check points for X, Y, and Z coordinates in comparison to target-based registration.

Author(s):  
W. Ostrowski ◽  
K. Bakuła

Many papers on both theoretical aspects of bundle adjustment of oblique images and new operators for detecting tie points on oblique images have been written. However, only a few achievements presented in the literature were practically implemented in commercial software. In consequence often aerial triangulation is performed either for nadir images obtained simultaneously with oblique photos or bundle adjustment for separate images captured in different directions. The aim of this study was to investigate how the orientation of oblique images can be carried out effectively in commercial software based on the structure from motion technology. The main objective of the research was to evaluate the impact of the orientation strategy on both duration of the process and accuracy of photogrammetric 3D products. Two, very popular software: Pix4D and Agisoft Photoscan were tested and two approaches for image blocks were considered. The first approach based only on oblique images collected in four directions and the second approach included nadir images. In this study, blocks for three test areas were analysed. Oblique images were collected with medium-format cameras in maltan cross configuration with registration of GNSS and INS data. As a reference both check points and digital surface models from airborne laser scanning were used.


2019 ◽  
Vol 9 (3) ◽  
pp. 509 ◽  
Author(s):  
Jakub Markiewicz ◽  
Dorota Zawieska

This paper discusses the issue of the influence of cartographic Terrestrial Laser Scanning (TLS) data conversion into feature-based automatic registration. Automatic registration of data is a multi-stage process, it is based on original software tools and consists of: (1) Conversion of data to the raster form, (2) register of TLS data in pairs in all possible combinations using the SURF (Speeded Up Robust Features) and FAST (Features from Accelerated Segment Test) algorithms, (3) the quality analysis of relative orientation of processed pairs, and (4) the final bundle adjustment. The following two problems, related to the influence of the spherical image, the orthoimage and the Mercator representation of the point cloud, are discussed: The correctness of the automatic tie points detection and distribution and the influence of the TLS position on the completeness of the registration process and the quality assessment. The majority of popular software applications use manually or semi-automatically determined corresponding points. However, the authors propose an original software tool to address the first issue, which automatically detects and matches corresponding points on each TLS raster representation, utilizing different algorithms (SURF and FAST). To address the second task, the authors present a series of analyses: The time of detection of characteristic points, the percentage of incorrectly detected points and adjusted characteristic points, the number of detected control and check points, the orientation accuracy of control and check points, and the distribution of control and check points. Selection of an appropriate method for the TLS point cloud conversion to the raster form and selection of an appropriate algorithm, considerably influence the completeness of the entire process, and the accuracy of data orientation. The results of the performed experiments show that fully automatic registration of the TLS point clouds in the raster forms is possible; however, it is not possible to propose one, universal form of the point cloud, because a priori knowledge concerning the scanner positions is required. If scanner stations are located close to one another in raster images or in spherical images, Mercator projections are recommended. In the case where fragments of the surface are measured under different angles from different distances and heights of the TLS, orthoimages are suggested.


Author(s):  
W. Ostrowski ◽  
K. Bakuła

Many papers on both theoretical aspects of bundle adjustment of oblique images and new operators for detecting tie points on oblique images have been written. However, only a few achievements presented in the literature were practically implemented in commercial software. In consequence often aerial triangulation is performed either for nadir images obtained simultaneously with oblique photos or bundle adjustment for separate images captured in different directions. The aim of this study was to investigate how the orientation of oblique images can be carried out effectively in commercial software based on the structure from motion technology. The main objective of the research was to evaluate the impact of the orientation strategy on both duration of the process and accuracy of photogrammetric 3D products. Two, very popular software: Pix4D and Agisoft Photoscan were tested and two approaches for image blocks were considered. The first approach based only on oblique images collected in four directions and the second approach included nadir images. In this study, blocks for three test areas were analysed. Oblique images were collected with medium-format cameras in maltan cross configuration with registration of GNSS and INS data. As a reference both check points and digital surface models from airborne laser scanning were used.


2021 ◽  
Vol 13 (11) ◽  
pp. 2195
Author(s):  
Shiming Li ◽  
Xuming Ge ◽  
Shengfu Li ◽  
Bo Xu ◽  
Zhendong Wang

Today, mobile laser scanning and oblique photogrammetry are two standard urban remote sensing acquisition methods, and the cross-source point-cloud data obtained using these methods have significant differences and complementarity. Accurate co-registration can make up for the limitations of a single data source, but many existing registration methods face critical challenges. Therefore, in this paper, we propose a systematic incremental registration method that can successfully register MLS and photogrammetric point clouds in the presence of a large number of missing data, large variations in point density, and scale differences. The robustness of this method is due to its elimination of noise in the extracted linear features and its 2D incremental registration strategy. There are three main contributions of our work: (1) the development of an end-to-end automatic cross-source point-cloud registration method; (2) a way to effectively extract the linear feature and restore the scale; and (3) an incremental registration strategy that simplifies the complex registration process. The experimental results show that this method can successfully achieve cross-source data registration, while other methods have difficulty obtaining satisfactory registration results efficiently. Moreover, this method can be extended to more point-cloud sources.


2019 ◽  
Vol 8 (6) ◽  
pp. 285 ◽  
Author(s):  
Balletti ◽  
Ballarin

In recent decades, 3D acquisition by laser scanning or digital photogrammetry has become one of the standard methods of documenting cultural heritage, because it permits one to analyze the shape, geometry, and location of any artefact without necessarily coming into contact with it. The recording of three-dimensional metrical data of an asset allows one to preserve and monitor, but also to understand and explain the history and cultural heritage shared. In essence, it constitutes a digital archive of the state of an artefact, which can be used for various purposes, be remodeled, or kept safely stored. With the introduction of 3D printing, digital data can once again take on material form and become physical objects from the corresponding mathematical models in a relatively short time and often at low cost. This possibility has led to a different consideration of the concept of virtual data, no longer necessarily linked to simple visual fruition. The importance of creating high-resolution physical copies has been reassessed in light of different types of events that increasingly threaten the protection of cultural heritage. The aim of this research is to analyze the critical issues in the production process of the replicas, focusing on potential problems in data acquisition and processing and on the accuracy of the resulting 3D printing. The metric precision of the printed model with 3D technology are fundamental for everything concerning geomatics and must be related to the same characteristics of the digital model obtained through the survey analysis.


Author(s):  
L. Barazzetti ◽  
D. Mezzino ◽  
M. Santana Quintero

Currently, the commercial market offers several tools for digital documentation of historic sites and buildings. Photogrammetry and laser scanning play a fundamental role in the acquisition of metric information, which is then processed to generate reliable records particularly useful also in the built heritage conservation field. Although potentially very fast and accurate, such techniques require expert operators to produce reliable results, especially in the case of complex and large sites.<br><br> The aim of this paper is to present the digital workflow developed for data acquisition and processing of the Shaikh Isa Bin Ali house in Muharraq, Bahrain. This historic structure is an outstanding example of Bahrain architecture as well as tangible memory of the country history, with strong connotations in the Bahrain cultural identity. The building has been documented employing several digital techniques, including: aerial (drone) and terrestrial photogrammetry, rectifying photography, total station and laser scanning. The documentation project has been developed for the Bahrain Authority for Culture and Antiquities (BACA) by a multidisciplinary team of experts from Carleton Immersive Media Studio (CIMS, Carleton University, Canada) and Gicarus Lab (Politecnico di Milano, Italy).


Author(s):  
M. Peter

Documentation of the “as-built” state of building interiors has gained a lot of interest in the recent years. Various data acquisition methods exist, e.g. the extraction from photographed evacuation plans using image processing or, most prominently, indoor mobile laser scanning. Due to clutter or data gaps as well as errors during data acquisition and processing, automatic reconstruction of CAD/BIM-like models from these data sources is not a trivial task. Thus it is often tried to support reconstruction by general rules for the perpendicularity and parallelism which are predominant in man-made structures. Indoor environments of large, public buildings, however, often also follow higher-level rules like symmetry and repetition of e.g. room sizes and corridor widths. In the context of reconstruction of city city elements (e.g. street networks) or building elements (e.g. fac¸ade layouts), formal grammars have been put to use. In this paper, we describe the use of Lindenmayer systems - which originally have been developed for the computer-based modelling of plant growth - to model and reproduce the layout of indoor environments in 2D.


Author(s):  
M. Hubacek ◽  
V. Kovarik ◽  
V. Kratochvil

Digital elevation models are today a common part of geographic information systems and derived applications. The way of their creation is varied. It depends on the extent of area, required accuracy, delivery time, financial resources and technologies available. The first model covering the whole territory of the Czech Republic was created already in the early 1980's. Currently, the 5th DEM generation is being finished. Data collection for this model was realized using the airborne laser scanning which allowed creating the DEM of a new generation having the precision up to a decimetre. Model of such a precision expands the possibilities of employing the DEM and it also offers new opportunities for the use of elevation data especially in a domain of modelling the phenomena dependent on highly accurate data. The examples are precise modelling of hydrological phenomena, studying micro-relief objects, modelling the vehicle movement, detecting and describing historical changes of a landscape, designing constructions etc. <br><br> Due to a nature of the technology used for collecting data and generating DEM, it is assumed that the resulting model achieves lower accuracy in areas covered by vegetation and in built-up areas. Therefore the verification of model accuracy was carried out in five selected areas in Moravia. The network of check points was established using a total station in each area. To determine the reference heights of check points, the known geodetic points whose heights were defined using levelling were used. Up to several thousands of points were surveyed in each area. Individual points were selected according to a different configuration of relief, different surface types, and different vegetation coverage. The sets of deviations were obtained by comparing the DEM 5G heights with reference heights which was followed by verification of tested elevation model. Results of the analysis showed that the model reaches generally higher precision than the declared one in majority of areas. This applies in particular to areas covered by vegetation. By contrast, the larger deviations occurred in relation to the slope of the terrain, in particular in the micro-relief objects. The results are presented in this article.


2014 ◽  
Vol 638-640 ◽  
pp. 2160-2163
Author(s):  
Gui Hua Cang ◽  
Jian Ping Yue

Fusion of close range photogrammetry (CRP) and terrestrial laser scanning (TLS) technology has been a hot topic in the field of building reconstruction. There are many ways to realize the fusion of the two kind data. In this paper, we propose a method for 3D-2D data registration based on Scale Invariant Feature Transform (SIFT) algorithm and range intensity data. 3D terrestrial laser scanner and digital camera are different sensors, which will lead to large difference between intensity image (derived from range intensity data) and color image. The traditional image matching method can not apply to register these kind images. This paper focuses on studying the feasibility and practicability of SIFT algorithm on such different images matching. The result shows that the principal of SIFT method is suitable for the registration of the two kind images.


Sign in / Sign up

Export Citation Format

Share Document