scholarly journals UAS LIDAR MAPPING OF AN ARCTIC TUNDRA WATERSHED: CHALLENGES AND OPPORTUNITIES

Author(s):  
A. D. Collins ◽  
C. G. Andresen ◽  
L. M. Charsley-Groffman ◽  
T. Cochran ◽  
J. Dann ◽  
...  

Abstract. Uncrewed aircraft systems (UAS) are increasingly used across disciplines in academic research. We deployed a heavy-lift UAS (<25 kg) for research in the Arctic tundra, a remote and complex landscape. Conducting UAS work in this location required adapting our standard field approach to include both the unique challenges of working in these locations with those specific to UAS work. We collected metadata on each field campaign and analyzed our expended efforts and the contributors to our successes and failures. We formulated a set of best practices to address each challenge in a systematic way, addressing each with the underlying goals of maximizing system and team resilience, operational efficiency, and safety. By adopting a structured set of best practices tenets into our UAS work in the Arctic, we achieved greater project success and we recommend integrating such methods into similar projects of high importance or consequence, especially for UAS LiDAR work in the Arctic.

2020 ◽  
pp. 75-99
Author(s):  
O. I. Sumina

One of the thermokarst relief forms is baidzharakh massif — the group of mounds separated by trenches formed as a result of the underground ice-wedge polygonal networks melting (Fig. 1). Study of baidzharakh vegetation took place on the northeast coast of the Taimyr Peninsula (the Pronchishcheva Bay area) and on the New Siberian Islands (the Kotelny Island) in 1973–1974 (Sumina, 1975, 1976, 1977a, b, 1979 et al.). The aim of this paper is to produce the classification of baidzharakh mound and trenches communities according to the Brown-Blanquet approach (Westhoff, Maarel, 1978) and to compare these data with the community types earlier established on domination principle (Sumina, 1975 et al.). The information obtained in the 1970s could be helpful in a comparative assessment of the thermokarst process dynamics over the past 4 decades, as well as for comparing these processes in other regions of the Arctic. Both studied areas are located in the northern part of the arctic tundra subzone. On the Taimyr Peninsula (and in particular in the Pronchishcheva Bay area) the plakor (zonal) communities belong to the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998. Our relevés of plakor tundra on the Kotelny Island demonstrate similarity with the zonal communities of the northeast coast of the Taimyr Peninsula (Table 2). Relevés of communities of thermokarst mounds were made within their boundaries, the size of ~ 30 m². In trenches sample plots of the same area had rectangular shape according to trench width. Relevés of plakor tundra were made on 5x6 m plots. There were marked: location in relief, moistening, stand physiognomy, nanorelief, the percent of open ground patches and degree of their overgrowing, total plant cover, that of vascular plants, mosses, and lichens (especially — crustose ons), and cover estimates for each species. The shape of thermokarst mounds depends on the stage of thermodenudation processes. Flat polygons about 0.5 m height with vegetation similar to the plakor tundra are formed at the beginning of ice melting (Fig. 3, a), after which the deformation of the mounds (from eroded flat polygon (Fig. 3, b) to eroded conical mound (Fig. 3, c). Such mounds of maximal height up to 5 m are located on the middle part of steep slopes, where thermodenudation is very active. The last stage of mound destruction is slightly convex mound with a lumpy surface and vegetation, typical to snowbed sites at slope foots (Fig. 3, d, and 5). Both on watersheds and on gentle slopes mounds are not completely destroyed; and on such elongated smooth-conical mounds dense meadow-like vegetation is developed (Fig. 6). On the Kotelny Island thermokarst mounds of all described shapes occur, while in the Pronchishcheva Bay area only flat polygons, eroded flat polygons, and elongated smooth-conical mounds are presented. Under the influence of thermodenudation the plakor (zonal) vegetation is being transformed that allows to consider the most of mound and trench communities as the variants of zonal association. On the base of 63 relevés, made in 14 baidzharakh massifs, 2 variants with 7 subvariants of the ass. Salici polaris–Hylocomietum alaskani Matveyeva 1998 were established, as well as 1 variant of the azonal ass. Poo arcticae– Dupontietum fisheri Matveyeva 1994, which combines the vegetation of wet trenches with dense herbmoss cover. A detailed description of each subvariant is done. All these syntaxa are compared with the types of mound and trenh communities established previously by the domination principle (Sumina, 1975, 1976, 1979 et al.) and with Brown-Blanquet’ syntaxa published by other authors. The Brown-Blanquet approach in compare with domination principle, clearly demonstrates the similarity between zonal and baidzharakh massifs vegetation. Diagnostic species of syntaxa of baidzharakh vegetation by other authors (Matveyeva, 1994; Zanokha, 1995; Kholod, 2007, 2014; Telyatnikov et al., 2017) differ from ours. On the one hand, this is due to the fact that all mentioned researchers worked in another areas, and on the other, with different hierarchial levels of syntaxa, which are subassociations (or vicariants) in cited works or variants and subvariants in the our. Communities of mounds as well as of trenches in different regions have unlike species composition, but similar apearance, which depends on the similarity of the life form composition and community pattern, stage of their transformation and environmental factors. This fact is a base to group communities by physiognomy in order to have an opportunity of comparative analysis of baidzharakh vegetation diversity in different regions of the Arctic. In total, 6 such groups for thermokarst mounds and trenches are proposed: “tundra-like” ― vegetation of flat polygonal mounds (or trenches) is similar to the plakor (zonal) communities; “eroded tundra-like” ― tundra-like vegetation is presented as fragments, open ground occupies the main part of flat polygonal mounds; “eroded mounds with nonassociated vegetation” ― eroded mounds of various shapes up to sharp conical with absent vegetation at the top and slopes, sparse pioneer vascular plants on a bare substrate and crustose lichens and chionophilous grasses at foots; “meadow-like” ― herb stands with a participation of tundra dwarf-shrubs, mosses, and lichens on elongated smooth-conical mounds and in moderately moist trenches; “communities in snowbeds” ― thin plant cover formed by small mosses, liverworts, crustose lichens, and sparse vascular plants in snowbed habitats on destroyed slightly convex mounds with a lumpy surface and in trenches; “communities of cotton grass” or others, depending on the dominant species ― in wet trenches where vegetation is similar to the arctic hypnum bogs with dominant hygrophyte graminoids as Eriophorum scheuchzeri, E. polystachion, Dupontia fischeri et al. This sheme according to physiognomic features of thermokarst mound and trench communities, as a simplier way to assess the current dynamic stage of the baidzharakh massifs, may be useful for monitoring the thermodenudation activity in different areas of the Arctic, particularly in connection with observed climate changes (ACIA, 2004) and a possible dramatic “cascade of their environmental consequences” (Fraser et al., 2018).


The Holocene ◽  
2020 ◽  
Vol 30 (7) ◽  
pp. 1091-1096 ◽  
Author(s):  
Eleanor MB Pereboom ◽  
Richard S Vachula ◽  
Yongsong Huang ◽  
James Russell

Wildfires in the Arctic tundra have become increasingly frequent in recent years and have important implications for tundra ecosystems and for the global carbon cycle. Lake sediment–based records are the primary means of understanding the climatic influences on tundra fires. Sedimentary charcoal has been used to infer climate-driven changes in tundra fire frequency but thus far cannot differentiate characteristics of the vegetation burnt during fire events. In forested ecosystems, charcoal morphologies have been used to distinguish changes in fuel type consumed by wildfires of the past; however, no such approach has been developed for tundra ecosystems. We show experimentally that charcoal morphologies can be used to differentiate graminoid (mean = 6.77; standard deviation (SD) = 0.23) and shrub (mean = 2.42; SD = 1.86) biomass burnt in tundra fire records. This study is a first step needed to construct more nuanced tundra wildfire histories and to understand how wildfire will impact the region as vegetation and fire change in the future.


2014 ◽  
Vol 16 (4) ◽  
pp. 475-491 ◽  
Author(s):  
Elke Krahmann

In 2012, the United Nations approved new Guidelines on the Use of Armed Private Security Companies by its agencies, funds and programmes. The Guidelines hold the potential to not only enhance the quality of armed security services contracted by the un, but also raise professional standards within the military and security industry more generally by serving as a model for other consumers and companies. Nevertheless, a close reading of the Guidelines indicates that there is still room for improvements. Drawing on best practices identified by industry associations, major clients and academic research, this article makes six recommendations for revision. Specifically, the article contends that expanding the scope, content and enforcement of the Guidelines would contribute to strengthening the control over private security contractors.


2009 ◽  
Vol 1 (1) ◽  
pp. 511-525
Author(s):  
Paul Arthur Berkman

Abstract Environmental and geopolitical state-changes are the underlying first principles of the diverse stakeholder positioning in the Arctic Ocean. The Arctic Ocean is changing from an ice-covered region to an ice-free region during the summer, which is an environmental state-change. As provided under the framework of the United Nations Convention on the Law of the Sea (UNCLOS), the central Arctic Ocean currently involves “High-Seas” (beyond the “Exclusive Economic Zones”) and the underlying “Area” of the deep-sea floor (beyond the “Continental Shelves”). Governance applications of this ‘donut’ demography – with international space surrounded by sovereign sectors – would be a geopolitical state-change in the Arctic Ocean. International governance strategies and applications for the central Arctic Ocean have far-reaching implications for the stewardship of other international spaces, which between Antarctica and the ocean beyond national jurisdictions account for nearly 75 percent of the Earth’s surface. In view of planetary-scale strategies for humankind, with frameworks such as climate, the Arctic Ocean underscores the challenges and opportunities to balance the governance of nation states and international spaces centuries into the future.


2012 ◽  
Vol 9 (4) ◽  
pp. 4543-4594 ◽  
Author(s):  
A. D. McGuire ◽  
T. R. Christensen ◽  
D. Hayes ◽  
A. Heroult ◽  
E. Euskirchen ◽  
...  

Abstract. Although arctic tundra has been estimated to cover only 8% of the global land surface, the large and potentially labile carbon pools currently stored in tundra soils have the potential for large emissions of carbon (C) under a warming climate. These emissions as radiatively active greenhouse gases in the form of both CO2 and CH4 could amplify global warming. Given the potential sensitivity of these ecosystems to climate change and the expectation that the Arctic will experience appreciable warming over the next century, it is important to assess whether responses of C exchange in tundra regions are likely to enhance or mitigate warming. In this study we compared analyses of C exchange of Arctic tundra between 1990–1999 and 2000–2006 among observations, regional and global applications of process-based terrestrial biosphere models, and atmospheric inversion models. Syntheses of the compilation of flux observations and of inversion model results indicate that the annual exchange of CO2 between arctic tundra and the atmosphere has large uncertainties that cannot be distinguished from neutral balance. The mean estimate from an ensemble of process-based model simulations suggests that arctic tundra acted as a sink for atmospheric CO2 in recent decades, but based on the uncertainty estimates it cannot be determined with confidence whether these ecosystems represent a weak or a strong sink. Tundra was 0.6 °C warmer in the 2000s compared to the 1990s. The central estimates of the observations, process-based models, and inversion models each identify stronger sinks in the 2000s compared with the 1990s. Similarly, the observations and the applications of regional process-based models suggest that CH4 emissions from arctic tundra have increased from the 1990s to 2000s. Based on our analyses of the estimates from observations, process-based models, and inversion models, we estimate that arctic tundra was a sink for atmospheric CO2 of 110 Tg C yr−1 (uncertainty between a sink of 291 Tg C yr−1 and a source of 80 Tg C yr−1) and a source of CH4 to the atmosphere of 19 Tg C yr−1 (uncertainty between sources of 8 and 29 Tg C yr−1). The suite of analyses conducted in this study indicate that it is clearly important to reduce uncertainties in the observations, process-based models, and inversions in order to better understand the degree to which Arctic tundra is influencing atmospheric CO2 and CH4 concentrations. The reduction of uncertainties can be accomplished through (1) the strategic placement of more CO2 and CH4 monitoring stations to reduce uncertainties in inversions, (2) improved observation networks of ground-based measurements of CO2 and CH4 exchange to understand exchange in response to disturbance and across gradients of hydrological variability, and (3) the effective transfer of information from enhanced observation networks into process-based models to improve the simulation of CO2 and CH4 exchange from arctic tundra to the atmosphere.


Author(s):  
Hani Albasoos ◽  
Gubara Hassan ◽  
Sara Al Zadjali

This study reviews the challenges and opportunities encountered by Qatar because of the blockade imposed by the neighboring countries, namely Saudi Arabia, the United Arab Emirates (UAE), Bahrain, and Egypt. It endeavors to highlight potential scenarios of the crisis. This paper employs a secondary source of information to achieve the objectives, such as books, articles, reports, and academic research, which were later subjected to thematic analysis. The findings of this research reveal that crisis management was an effective strategy implemented by the Qatari Government. It helped Qatari officials to change and transfer the negative impacts to a positive force. The crisis management strategy encouraged Qatar to rely on their local industries, improve education and media institutes, and use Qatar’s soft power internationally. Although 2017 was a challenging year for Qatar due to the crisis, yet the national economy showed an accelerated growth of 5% in the second half of the same year. 


2021 ◽  
Author(s):  
Ruby R. Pennell

The climate change phenomenon occurring across the globe is having an increasingly alarming effect on Canada’s Arctic. Warming temperatures can have wide spanning impacts ranging from more rain and storm events, to increasing runoff, thawing permafrost, sea ice decline, melting glaciers, ecosystem disruption, and more. The purpose of this MRP was to assess the climate-induced landscape changes, including glacial loss and vegetation change, in Pond Inlet, Nunavut. A time series analysis was performed using the intervals 1989-1997, 1997-2005, and 2005-2016. The two methods for monitoring change were 1) the Normalized Difference Snow Index (NDSI) to detect glacial change, and 2) the Normalized Difference Vegetation Index (NDVI) to detect vegetation change, both utilizing threshold and masking techniques to increase accuracy. It was found that the percent of glacial loss and vegetation change in Pond Inlet had consistently increased throughout each time period. The area of glacial loss grew through each period to a maximum of 376 km2 of glacial loss in the last decade. Similarly, the area of the Arctic tundra that experienced vegetation change increased in each time period to a maximum of 660 km2 in the last decade. This vegetation change was characterized by overall increasing values of NDVI, revealing that many sections of the Arctic tundra in Pond Inlet were increasing in biomass. However, case study analysis revealed pixel clustering around the lower vegetation class thresholds used to classify change, indicating that shifts between these vegetation classes were likely exaggerated. Shifts between the higher vegetation classes were significant, and were what contributed to the most change in the last decade. The observations of higher glacial melt and increases in biomass are occurring in parallel with the increasing temperatures in Pond Inlet. Relevant literature in the Arctic agrees with the findings of this MRP that there are significant trends of glacial loss and vegetation greening and many studies attribute this directly to climate warming. The results of this study provide the necessary background with regards to landscape changes which could be used in future field studies investigating the climate induced changes in Pond Inlet. This study also demonstrates that significant landscape modifications have occurred in the recent decades and there is a strong need for continued research and monitoring of climate induced changes.


2020 ◽  
Vol 17 (15) ◽  
pp. 4025-4042
Author(s):  
Dean Howard ◽  
Yannick Agnan ◽  
Detlev Helmig ◽  
Yu Yang ◽  
Daniel Obrist

Abstract. Understanding the processes that influence and control carbon cycling in Arctic tundra ecosystems is essential for making accurate predictions about what role these ecosystems will play in potential future climate change scenarios. Particularly, air–surface fluxes of methane and carbon dioxide are of interest as recent observations suggest that the vast stores of soil carbon found in the Arctic tundra are becoming more available to release to the atmosphere in the form of these greenhouse gases. Further, harsh wintertime conditions and complex logistics have limited the number of year-round and cold-season studies and hence too our understanding of carbon cycle processes during these periods. We present here a two-year micrometeorological data set of methane and carbon dioxide fluxes, along with supporting soil pore gas profiles, that provide near-continuous data throughout the active summer and cold winter seasons. Net emission of methane and carbon dioxide in one of the study years totalled 3.7 and 89 g C m−2 a−1 respectively, with cold-season methane emission representing 54 % of the annual total. In the other year, net emission totals of methane and carbon dioxide were 4.9 and 485 g C m−2 a−1 respectively, with cold-season methane emission here representing 82 % of the annual total – a larger proportion than has been previously reported in the Arctic tundra. Regression tree analysis suggests that, due to relatively warmer air temperatures and deeper snow depths, deeper soil horizons – where most microbial methanogenic activity takes place – remained warm enough to maintain efficient methane production whilst surface soil temperatures were simultaneously cold enough to limit microbial methanotrophic activity. These results provide valuable insight into how a changing Arctic climate may impact methane emission, and highlight a need to focus on soil temperatures throughout the entire active soil profile, rather than rely on air temperature as a proxy for modelling temperature–methane flux dynamics.


Sign in / Sign up

Export Citation Format

Share Document