scholarly journals ENABLING EARTH SCIENCE MEASUREMENTS WITH NASA UAS CAPABILITIES

Author(s):  
R. Albertson ◽  
S. Schoenung ◽  
M. Fladeland ◽  
F. Cutler ◽  
B. Tagg

NASA’s Airborne Science Program (ASP) maintains a fleet of manned and unmanned aircraft for Earth Science measurements and observations. The unmanned aircraft systems (UAS) range in size from very large (Global Hawks) to medium (SIERRA, Viking) and relatively small (DragonEye). UAS fly from very low (boundary layer) to very high altitude (stratosphere). NASA also supports science and applied science projects using UAS operated by outside companies or agencies. The aircraft and accompanying data and support systems have been used in numerous investigations. For example, Global Hawks have been used to study both hurricanes and atmospheric composition. SIERRA has been used to study ice, earthquake faults, and coral reefs. DragonEye is being used to measure volcanic emissions. As a foundation for NASA’s UAS work, Altair and Ikhana not only flew wildfires in the US, but also provided major programs for the development of real-time data download and processing capabilities. In 2014, an advanced L-band Synthetic Aperture Radar flew for the first time on Global Hawk, demonstrating UAVSAR, which has been flying successfully on a manned aircraft. This paper focuses on two topics: 1) results of a NASA program called UAS-Enabled Earth Science, in which three science teams flew UAS to demonstrate platform and sensor performance, airspace integration, and applied science results from the data collected; 2) recent accomplishments with the high altitude, long-duration Global Hawks. The challenges experienced with flying UAS are discussed. Recent upgrades to data processing, communications, tracking and flight planning systems are described.

2014 ◽  
Vol 03 (02) ◽  
pp. 1403001 ◽  
Author(s):  
J. A. Gaskin ◽  
I. S. Smith ◽  
W. V. Jones

In 1783, the Montgolfier brothers ushered in a new era of transportation and exploration when they used hot air to drive an un-tethered balloon to an altitude of ~2 km. Made of sackcloth and held together with cords, this balloon challenged the way we thought about human travel, and it has since evolved into a robust platform for performing novel science and testing new technologies. Today, high-altitude balloons regularly reach altitudes of 40 km, and they can support payloads that weigh more than 3000 kg. Long-duration balloons can currently support mission durations lasting ~55 days, and developing balloon technologies (i.e. Super-Pressure Balloons) are expected to extend that duration to 100 days or longer; competing with satellite payloads. This relatively inexpensive platform supports a broad range of science payloads, spanning multiple disciplines (astrophysics, heliophysics, planetary and earth science). Applications extending beyond traditional science include testing new technologies for eventual space-based application and stratospheric airships for planetary applications.


2021 ◽  
Author(s):  
Antje Inness ◽  
Melanie Ades ◽  
Dimitris Balis ◽  
Dmitry Efremenko ◽  
Johannes Flemming ◽  
...  

Abstract. The Copernicus Atmosphere Monitoring Service (CAMS), operated by the European Centre for Medium-Range Weather Forecasts on behalf of the European Commission, provides daily analyses and 5-day forecasts of atmospheric composition, including forecasts of volcanic sulphur dioxide (SO2) in near-real time. CAMS currently assimilates total column SO2 retrievals from the GOME-2 instruments on MetOp-B and -C and the TROPOMI instrument on Sentinel-5P which give information about the location and strength of volcanic plumes. However, the operational TROPOMI and GOME-2 retrievals do not provide any information about the height of the volcanic plumes and therefore some prior assumptions need to be made in the CAMS data assimilation system about where to place the resulting SO2 increments in the vertical. In the current operational CAMS configuration, the SO2 increments are placed in the mid-troposphere, around 550 hPa or 5 km. While this gives good results for the majority of volcanic emissions, it will clearly be wrong for eruptions that inject SO2 at very different altitudes, in particular exceptional events where part of the SO2 plume reaches the stratosphere. A new algorithm, developed by DLR for GOME-2 and TROPOMI and optimized in the frame of the ESA-funded Sentinel-5P Innovation–SO2 Layer Height Project, the Full-Physics Inverse Learning Machine (FP_ILM) algorithm, retrieves SO2 layer height from TROPOMI in NRT in addition to the SO2 column. CAMS is testing the assimilation of these data, making use of the NRT layer height information to place the SO2 increments at a retrieved altitude. Assimilation tests with the TROPOMI SO2 layer height data for the Raikoke eruption in June 2019 show that the resulting CAMS SO2 plume heights agree better with IASI plume height retrievals than operational CAMS runs without the TROPOMI SO2 layer height information and that making use of the additional layer height information leads to improved SO2 forecasts than when using the operational CAMS configuration. By assimilating the SO2 layer height data the CAMS system can predict the overall location of the Raikoke SO2 plume up to 5 days in advance for about 20 days after the initial eruption.


2020 ◽  
Vol 42 (4) ◽  
pp. 478-484
Author(s):  
Kirill Golikov ◽  
Ekaterina LAPTEVA ◽  
A. SOCHIVKO

The article discusses the use of live plants as the botanical exposition component supplement of the “Natural areas” (hall № 17 “Natural zonality and its components” and № 20 “Desert, subtropical, tropical countries, high-altitude zone”) and “Physico-georaphic regions” (hall № 24 “Continents and parts of the world”) departments in order to visualize information presented in the Earth Science Museum. Demonstration of plants originating from different regions of the world representing different life forms and being structural components of various plant communities allows to visually characterizing thematic aspects of an exposition. That in turn reveal such principles of systematic nature organization as ecobiomorphic and phytocenotic.


2021 ◽  
Author(s):  
Nabil Deabji ◽  
Khanneh Wadinga Fomba ◽  
Eduardo José dos Santos Souza ◽  
Hartmut Herrmann

<p>Aerosol particles are important constituents of the atmosphere due to their role in controlling climate-related processes. In addition, their impacts on air quality and human health make it essential to study. However, the characterization and the identification of natural and anthropogenic atmospheric particles can be challenging due to the complex mixture occurring during atmospheric transport. Background locations such as high-altitude sites provide valuable infrastructure for obtaining representative data for understanding various pathways for aerosol interactions useful in assessing atmospheric composition. However, information about aerosol characteristics at high-altitude in the African regions and their relation to urban aerosol composition is still not well understood. In the present study, PM<sub>10</sub> and PM<sub>2.5</sub> particulate matter was characterized at two different sites in the North African region of Morocco. A background site located at the newly established AM5 research station in the Middle Atlas region at an altitude of 2100 m and an urban site situated in a polluted city, Fez. The goal was to determine chemical components, evaluate Saharan dust’s role on the PM10 concentrations between the sites, and assess the impact of urban pollution on background aerosol composition. The results indicate that the background aerosol composition is influenced by both regional and trans-regional transport. Despite the site's proximity to the Sahara Desert, the deserts influence on the atmospheric composition was observed for only 22% of the time and this was mainly seasonal. Marine air masses were more dominant with a mixture of sea salt and polluted aerosol from the coastal regions especially during wintertime. Furthermore, high concentrations of mineral dust were observed during the daytime due to the resuspension of road dust. At the same time, an increase of PAHs and anthropogenic metals such as Pb, Ni, and Cu were found during the nighttime because of the boundary layer variation. The Fez's urban site is characterized by a high contribution of elemental carbon (6%) and organic biomass tracers (3%) such as Levoglucosane and 4-nitrophenol.</p>


2016 ◽  
Vol 33 (8) ◽  
pp. 1569-1582 ◽  
Author(s):  
Adam L. Houston ◽  
Roger J. Laurence ◽  
Tevis W. Nichols ◽  
Sean Waugh ◽  
Brian Argrow ◽  
...  

AbstractResults are presented from an intercomparison of temperature, humidity, and wind velocity sensors of the Tempest unmanned aircraft system (UAS) and the National Severe Storms Laboratory (NSSL) mobile mesonet (NSSL-MM). Contemporaneous evaluation of sensor performance was facilitated by mounting the Tempest wing with attached sensors to the NSSL-MM instrument rack such that the Tempest and NSSL-MM sensors could collect observations within a nearly identical airstream. This intercomparison was complemented by wind tunnel simulations designed to evaluate the impact of the mobile mesonet vehicle on the observed wind velocity.The intercomparison revealed strong correspondence between the temperature and relative humidity (RH) data collected by the Tempest and the NSSL-MM with differences generally within sensor accuracies. Larger RH differences were noted in the presence of heavy precipitation; however, despite the exposure of the Tempest temperature and humidity sensor to the airstream, there was no evidence of wet bulbing within precipitation. Wind tunnel simulations revealed that the simulated winds at the location of the NSSL-MM wind monitor were ~4% larger than the expected winds due to the acceleration of the flow over the vehicle. Simulated vertical velocity exceeded 1 m s−1 for tunnel inlet speeds typical of a vehicle moving at highway speeds. However, the theoretical noncosine reduction in winds that should result from the impact of vertical velocity on the laterally mounted wind monitor was found to be negligible across the simulations. Comparison of the simulated and observed results indicates a close correspondence, provided the crosswind component of the flow is small.


2006 ◽  
Vol 110 (1111) ◽  
pp. 623-626 ◽  
Author(s):  
L. R. Newcome

Abstract This paper applies existing information on solar storms to unmanned aviation; no new research data is presented. The purpose of this paper is to alert the unmanned aviation community to the potential hazards posed by solar storms, to familiarise it with the effects of solar storms and how to mitigate them, and to encourage research on solar storm effects on high altitude long endurance (HALE) aircraft and airship design and operations. As unmanned aircraft and airships move increasingly into high altitude (50,000+ft), endurance (24+ hr) roles, they will become vulnerable to the effects of space weather, specifically that of solar storms. Although solar storms are commonly associated with their impact on satellites, they affect the routing and timing of airline flights flying for six to eight hours at 30,000 to 40,000ft. Operating twice as high and with flight times twice as long (or longer) than those of airliners, HALE aircraft and airships occupy a middle zone of vulnerability, being more so than airliners but less so than satellites. A key difference however is that satellites are designed for space weather, whereas some current HALE vehicles are not. The paper concludes that unmanned HALE aircraft and airships can be one to three orders of magnitude more vulnerable to solar storms than a trans-Pacific airliner.


SPE Journal ◽  
2018 ◽  
Vol 23 (05) ◽  
pp. 1648-1668 ◽  
Author(s):  
HanYi Wang ◽  
Mukul M. Sharma

Summary A new method is proposed to estimate the compliance and conductivity of induced unpropped fractures as a function of the effective stress acting on the fracture from diagnostic-fracture-injection-test (DFIT) data. A hydraulic-fracture resistance to displacement and closure is described by its compliance (or stiffness). Fracture compliance is closely related to the elastic, failure, and hydraulic properties of the rock. Quantifying fracture compliance and fracture conductivity under in-situ conditions is crucial in many Earth-science and engineering applications but is very difficult to achieve. Even though laboratory experiments are used often to measure fracture compliance and conductivity, the measurement results are influenced strongly by how the fracture is created, the specific rock sample obtained, and the degree to which it is preserved. As such, the results may not be representative of field-scale fractures. During the past 2 decades, the DFIT has evolved into a commonly used and reliable technique to obtain in-situ stresses, fluid-leakoff parameters, and formation permeability. The pressure-decline response across the entire duration of a DFIT reflects the process of fracture closure and reservoir-flow capacity. As such, it is possible to use these data to quantify changes in fracture conductivity as a function of stress. In this paper, we present a single, coherent mathematical framework to accomplish this. We show how each factor affects the pressure-decline response, and the effects of previously overlooked coupled mechanisms are examined and discussed. Synthetic and field-case studies are presented to illustrate the method. Most importantly, a new specialized plot (normalized system-stiffness plot) is proposed, which not only provides clear evidence of the existence of a residual fracture width as a fracture is closing during a DFIT, but also allows us to estimate fracture-compliance (or stiffness) evolution, and infer unpropped fracture conductivity using only DFIT pressure and time data alone. It is recommended that the normalized system-stiffness plot (NS plot) be used as a standard practice to complement the G-function or square-root-of-time plot and log-log plot because it provides very valuable information on fracture-closure behavior and the properties of fracture-surface roughness at a field-scale, information that cannot be obtained by any other means.


1991 ◽  
Vol 1 (1) ◽  
pp. 1-19 ◽  
Author(s):  
William J. Ashby

AbstractIt is argued that two variables of Modern French (the negative particle ne and the consonant l of clitic pronouns such as il) are indeed indices of ongoing linguistic change, even though this change appears to be of long duration. This conclusion is based not only on the distribution of the variables in a corpus of natural French discourse, but also on independent linguistic evidence, together with the available historical record. In the absence of adequate ‘real-time’ data, variationist analysis yielding synchronic, “apparent-time” data provides a useful means of charting the drift of the language.


Sign in / Sign up

Export Citation Format

Share Document