scholarly journals Solution-region-based synthesis approach for selecting optimal four-bar linkages with the Ball–Burmester point

2019 ◽  
Vol 10 (1) ◽  
pp. 25-33 ◽  
Author(s):  
Lairong Yin ◽  
Long Huang ◽  
Juan Huang ◽  
Lei Tian ◽  
Fangyi Li

Abstract. In this paper, we present a solution-region-based synthesis approach for selecting optimal four-bar linkages with a Ball–Burmester point. We discuss both general and special cases of the Burmester point that coincide with the Ball point at the pole of the inflection circle. Given the coordinates of one fixed joint, any point on the target's straight line, and the direction of this straight line, we can synthesize an infinite number of mechanisms using a coupler curve with five-point contacts with its tangent by adopting the proposed approach. Each initial parameter corresponds to three side links that can generate three four-bar mechanisms. We generate different mechanism property charts by developing mechanism software that enables users to intuitively identify relevant linkage information and select the optimal linkage. This novel approach is a visualized analytical method for synthesizing and selecting optimal four-bar linkages with one Ball–Burmester point on its coupler curve.

2011 ◽  
Vol 199-200 ◽  
pp. 1240-1243 ◽  
Author(s):  
Lai Rong Yin ◽  
Jian You Han ◽  
Tong Yang

When a Burmester point coincides with the Ball point at the inflection circle pole, given a fixed joint and the point, which is on the expecting straight-line and direction can synthesize an infinite number of mechanisms with coupler curve having a five-point contacts with its tangent, namely, Burmester point. Any displacement is corresponding to three four-bar straight-line linkages with the synthesis formulations given. The property charts, which include the bar ratio, the sum of bars, the relative straight-line length, mechanism types, and so on, are drawn by developing a mechanism software based on vc++6.0 with the solution region method. So the users can find out the involved linkages information intuitively, and also the aimlessness in choosing optimal mechanisms is avoided effectively.


2019 ◽  
Vol 10 (2) ◽  
pp. 545-552 ◽  
Author(s):  
Lairong Yin ◽  
Long Huang ◽  
Juan Huang ◽  
Peng Xu ◽  
Xuejun Peng ◽  
...  

Abstract. In this paper, a synthesis method is proposed for the 5-point-contact four-bar linkage that approximates a straight line with given angle parameters. The given parameters were the angles and the location of the Ball point. Synthesis equations were derived for a general Ball–Burmester point case, the Ball–Burmester point at an inflection pole, and the Ball point that coincided with two Burmester points, resulting in three respective groups of bar linkages. Next, taking Ball–Burmester point as the coupler point, two out of the three bar-linkage combinations were used to generate three four-bar mechanisms that shared the same portion of a rectilinear trajectory. Computation examples were presented, and nine cognate straight-line mechanisms were obtained based on the Roberts-Chebyshev theory. Considering that the given parameters were angles which was arbitrarily chosen, with the other two serving as the horizontal and vertical axes, so the solution region graphs of the solutions for three mechanism configurations were plotted. Based on these graphs, the distribution of the mechanism attributes was obtained with high efficiency. By imposing constraints, the optimum mechanism solution was straightforwardly identified by the designers. For the angular parameters prescribed in this paper, the solutions for three straight-line mechanism configurations were obtained, along with nine cognate straight-line mechanisms that shared the same portion of the rectilinear trajectory. All the fixed pivot installation locations and motion performances differed, thus providing multiple solutions to the trajectory of the synthesis of mechanisms.


Author(s):  
Hong-Sen Yan ◽  
Meng-Hui Hsu

Abstract An analytical method is presented for locating all velocity instantaneous centers of linkage mechanisms with single or multiple degrees of freedom. The method is based on the fact that the coefficient matrix of the derived velocity equations for vector loops, independent inputs, and instantaneous centers is singular. This approach also works for special cases with kinematic indeterminacy or singular configurations.


Author(s):  
Lixin He ◽  
Jing Yang ◽  
Bin Kong ◽  
Can Wang

It is one of very important and basic problem in compute vision field that recovering depth information of objects from two-dimensional images. In view of the shortcomings of existing methods of depth estimation, a novel approach based on SIFT (the Scale Invariant Feature Transform) is presented in this paper. The approach can estimate the depths of objects in two images which are captured by an un-calibrated ordinary monocular camera. In this approach, above all, the first image is captured. All of the camera parameters remain unchanged, and the second image is acquired after moving the camera a distance d along the optical axis. Then image segmentation and SIFT feature extraction are implemented on the two images separately, and objects in the images are matched. Lastly, an object depth can be computed by the lengths of a pair of straight line segments. In order to ensure that the best appropriate a pair of straight line segments are chose and reduce the computation, the theory of convex hull and the knowledge of triangle similarity are employed. The experimental results show our approach is effective and practical.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2592 ◽  
Author(s):  
Ming Ma ◽  
Qian Song ◽  
Yang Gu ◽  
Zhimin Zhou

In the field of indoor pedestrian positioning, the improved Quasi-Static magnetic Field (iQSF) method has been proposed to estimate gyroscope biases in magnetically perturbed environments. However, this method is only effective when a person walks along straight-line paths. For other curved or more complex path patterns, the iQSF method would fail to detect the quasi-static magnetic field. To address this issue, a novel approach is developed for quasi-static magnetic field detection in foot-mounted Inertial Navigation System. The proposed method detects the quasi-static magnetic field using the rate of change in differences between the magnetically derived heading and the heading derived from gyroscope. In addition, to eliminate the distortions caused by system platforms and shoes, a magnetometer calibration method is developed and the calibration is transformed from three-dimensional to two-dimensional coordinate according to the motion model of a pedestrian. The experimental results demonstrate that the proposed method can provide superior performance in suppressing the heading errors with the comparison to iQSF method.


1993 ◽  
Vol 39 (5) ◽  
pp. 766-772 ◽  
Author(s):  
K Emancipator ◽  
M H Kroll

Abstract Quantitative measures of the nonlinearity of an analytical method are defined as follows: the "(dimensional) nonlinearity" of a method is the square root of the mean of the square of the deviation of the response curve from a straight line, where the straight line is chosen to minimize the nonlinearity. The "relative nonlinearity" is defined as the dimensional nonlinearity divided by the difference between the maximum and minimum assayed values. These definitions may be used to develop practical criteria for linearity that are still objective. Calculation of the nonlinearity requires a method of curve-fitting. In this article, we use polynomial regression to demonstrate calculations, but the definition of nonlinearity also accommodates alternative nonlinear regression procedures.


2012 ◽  
Vol 15 (03) ◽  
pp. 370-384 ◽  
Author(s):  
Morteza Nobakht ◽  
C.R.. R. Clarkson

Summary Many tight/shale gas wells exhibit linear flow, which can last for several years. Linear flow can be analyzed using a square-root-of-time plot, a plot of rate-normalized pressure vs. the square root of time. Linear flow appears as a straight line on this plot, and the slope of this line can be used to calculate the product of fracture half-length and the square root of permeability. In this paper, linear flow from a fractured well in a tight/shale gas reservoir under a constant-flowing-pressure constraint is studied. It is shown that the slope of the square-root-of-time plot results in an overestimation of fracture half-length, if permeability is known. The degree of this overestimation is influenced by initial pressure, flowing pressure, and formation compressibility. An analytical method is presented to correct the slope of the square-root-of-time plot to improve the overestimation of fracture halflength. The method is validated using a number of numerically simulated cases. As expected, the square-root-of-time plots for these simulated cases appear as a straight line during linear flow for constant flowing pressure. It is found that the newly developed analytical method results in a more reliable estimate of fracture half-length, if permeability is known. Our approach, which is fully analytical, results in an improvement in linear-flow analysis over previously presented methods. Finally, the application of this method to multifractured horizontal wells is discussed and the method is applied to three field examples.


1975 ◽  
Vol 30 (1-2) ◽  
pp. 88-90 ◽  
Author(s):  
Kuno Kirschfeld ◽  
M. Lindauer ◽  
H. Martin

Abstract It is shown that the knowledge of the E-vector direction of the linearly polarized light at any point of the sky alone is insufficient for the determination of the position of the sun. If the E-vector direction of a second point is not known the knowledge of at least one other parameter is necessary. This parameter might be the height of the sun over the horizon. With the knowledge of the height the infinite number of solutions for the sun’s position becomes reduced to two, or in special cases to one. These cases are derived.


2003 ◽  
Vol 12 (01) ◽  
pp. 89-100 ◽  
Author(s):  
UĞUR CAMCI ◽  
İLHAMİ YAVUZ

The Ricci collineation classifications of Kantowski–Sachs, Bianchi types I and III spacetimes are studied according to their degenerate and non-degenerate Ricci tensor. When the Ricci tensor is degenerate, the special cases are classified and it is shown that there are many cases of Ricci collineations (RCs) with infinite number of degrees of freedom, and the group of RCs is ten-dimensional in some spacial cases. Furthermore, it is found that when the Ricci tensor is non-degenerate, the group of RCs is finite-dimensional, and we have only either four which coincides with the isometries or six proper RCs in addition to the four isometries.


Author(s):  
Jiaqin Chen ◽  
Vadim Shapiro ◽  
Krishnan Suresh ◽  
Igor Tsukanov

We propose a novel approach to shape optimization that combines and retains the advantages of the earlier optimization techniques. The shapes in the design space are represented implicitly as level sets of a higher-dimensional function that is constructed using B-splines (to allow free-form deformations), and parameterized primitives combined with R-functions (to support desired parametric changes). Our approach to shape design and optimization offers great flexibility because it provides explicit parametric control of geometry and topology within a large space of freeform shapes. The resulting method is also general in that it subsumes most other types of shape optimization as special cases. We describe an implementation of the proposed technique with attractive numerical properties. The effectiveness of the method is demonstrated by several numerical examples.


Sign in / Sign up

Export Citation Format

Share Document