scholarly journals Review article: State-of-the-art trajectory tracking of autonomous vehicles

2021 ◽  
Vol 12 (1) ◽  
pp. 419-432
Author(s):  
Lei Li ◽  
Jun Li ◽  
Shiyi Zhang

Abstract. Air pollution, energy consumption, and human safety issues have aroused people's concern around the world. This phenomenon could be significantly alleviated with the development of automatic driving techniques, artificial intelligence, and computer science. Autonomous vehicles can be generally modularized as environment perception, path planning, and trajectory tracking. Trajectory tracking is a fundamental part of autonomous vehicles which controls the autonomous vehicles effectively and stably to track the reference trajectory that is predetermined by the path planning module. In this paper, a review of the state-of-the-art trajectory tracking of autonomous vehicles is presented. Both the trajectory tracking methods and the most commonly used trajectory tracking controllers of autonomous vehicles, besides state-of-art research studies of these controllers, are described.

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4062 ◽  
Author(s):  
Rodrigo Gutiérrez ◽  
Elena López-Guillén ◽  
Luis M. Bergasa ◽  
Rafael Barea ◽  
Óscar Pérez ◽  
...  

Automated Driving Systems (ADSs) require robust and scalable control systems in order to achieve a safe, efficient and comfortable driving experience. Most global planners for autonomous vehicles provide as output a sequence of waypoints to be followed. This paper proposes a modular and scalable waypoint tracking controller for Robot Operating System (ROS)-based autonomous guided vehicles. The proposed controller performs a smooth interpolation of the waypoints and uses optimal control techniques to ensure robust trajectory tracking even at high speeds in urban environments (up to 50 km/h). The delays in the localization system and actuators are compensated in the control loop to stabilize the system. Forward velocity is adapted to path characteristics using a velocity profiler. The controller has been implemented as an ROS package providing scalability and exportability to the system in order to be used with a wide variety of simulators and real vehicles. We show the results of this controller using the novel and hyper realistic CARLA Simulator and carrying out a comparison with other standard and state-of-art trajectory tracking controllers.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 694 ◽  
Author(s):  
Ellora Padhi ◽  
Subhasish Dey ◽  
Venkappayya R. Desai ◽  
Nadia Penna ◽  
Roberto Gaudio

In a natural gravel-bed stream, the bed that has an organized roughness structure created by the streamflow is called the water-worked gravel bed (WGB). Such a bed is entirely different from that created in a laboratory by depositing and spreading gravels in the experimental flume, called the screeded gravel bed (SGB). In this paper, a review on the state-of-the-art research on WGBs is presented, highlighting the role of water-work in determining the bed topographical structures and the turbulence characteristics in the flow. In doing so, various methods used to analyze the bed topographical structures are described. Besides, the effects of the water-work on the turbulent flow characteristics, such as streamwise velocity, Reynolds and form-induced stresses, conditional turbulent events and secondary currents in WGBs are discussed. Further, the results form WGBs and SGBs are compared critically. The comparative study infers that a WGB exhibits a higher roughness than an SGB. Consequently, the former has a higher magnitude of turbulence parameters than the latter. Finally, as a future scope of research, laboratory experiments should be conducted in WGBs rather than in SGBs to have an appropriate representation of the flow field close to a natural stream.


Sign in / Sign up

Export Citation Format

Share Document