scholarly journals A Waypoint Tracking Controller for Autonomous Road Vehicles Using ROS Framework

Sensors ◽  
2020 ◽  
Vol 20 (14) ◽  
pp. 4062 ◽  
Author(s):  
Rodrigo Gutiérrez ◽  
Elena López-Guillén ◽  
Luis M. Bergasa ◽  
Rafael Barea ◽  
Óscar Pérez ◽  
...  

Automated Driving Systems (ADSs) require robust and scalable control systems in order to achieve a safe, efficient and comfortable driving experience. Most global planners for autonomous vehicles provide as output a sequence of waypoints to be followed. This paper proposes a modular and scalable waypoint tracking controller for Robot Operating System (ROS)-based autonomous guided vehicles. The proposed controller performs a smooth interpolation of the waypoints and uses optimal control techniques to ensure robust trajectory tracking even at high speeds in urban environments (up to 50 km/h). The delays in the localization system and actuators are compensated in the control loop to stabilize the system. Forward velocity is adapted to path characteristics using a velocity profiler. The controller has been implemented as an ROS package providing scalability and exportability to the system in order to be used with a wide variety of simulators and real vehicles. We show the results of this controller using the novel and hyper realistic CARLA Simulator and carrying out a comparison with other standard and state-of-art trajectory tracking controllers.

Transport ◽  
2021 ◽  
Vol 0 (0) ◽  
pp. 1-17
Author(s):  
Runqiao Liu ◽  
Minxiang Wei ◽  
Nan Sang ◽  
Jianwei Wei

To achieve anti-crosswind, anti-sideslip, and anti-rollover in trajectory-tracking for Four-Wheel Steering (4WS) autonomous vehicles, a trajectory-tracking controller based on a four-channel Active Disturbance Rejection Control (ADRC) was used to track the desired lateral displacement, longitudinal displacement, yaw angle, and roll angle, and minimize the tracking errors between the actual output values and the desired values through static decoupling steering and braking systems. In addition, the anti-crosswind, anti-sideslip, and anti-rollover simulations were implemented with CarSim®. Finally, the simulation results showed that the 4WS autonomous vehicle with the controller still has good anti-crosswind, anti-sideslip, and anti-rollover performance in path tracking, even under a small turning radius or lowadhesion curved roads.


2021 ◽  
Vol 12 (1) ◽  
pp. 419-432
Author(s):  
Lei Li ◽  
Jun Li ◽  
Shiyi Zhang

Abstract. Air pollution, energy consumption, and human safety issues have aroused people's concern around the world. This phenomenon could be significantly alleviated with the development of automatic driving techniques, artificial intelligence, and computer science. Autonomous vehicles can be generally modularized as environment perception, path planning, and trajectory tracking. Trajectory tracking is a fundamental part of autonomous vehicles which controls the autonomous vehicles effectively and stably to track the reference trajectory that is predetermined by the path planning module. In this paper, a review of the state-of-the-art trajectory tracking of autonomous vehicles is presented. Both the trajectory tracking methods and the most commonly used trajectory tracking controllers of autonomous vehicles, besides state-of-art research studies of these controllers, are described.


Information ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 21
Author(s):  
Johannes Ossig ◽  
Stephanie Cramer ◽  
Klaus Bengler

In the human-centered research on automated driving, it is common practice to describe the vehicle behavior by means of terms and definitions related to non-automated driving. However, some of these definitions are not suitable for this purpose. This paper presents an ontology for automated vehicle behavior which takes into account a large number of existing definitions and previous studies. This ontology is characterized by an applicability for various levels of automated driving and a clear conceptual distinction between characteristics of vehicle occupants, the automation system, and the conventional characteristics of a vehicle. In this context, the terms ‘driveability’, ‘driving behavior’, ‘driving experience’, and especially ‘driving style’, which are commonly associated with non-automated driving, play an important role. In order to clarify the relationships between these terms, the ontology is integrated into a driver-vehicle system. Finally, the ontology developed here is used to derive recommendations for the future design of automated driving styles and in general for further human-centered research on automated driving.


Author(s):  
Qijia Yao

Space manipulator is considered as one of the most promising technologies for future space activities owing to its important role in various on-orbit serving missions. In this study, a robust finite-time tracking control method is proposed for the rapid and accurate trajectory tracking control of an attitude-controlled free-flying space manipulator in the presence of parametric uncertainties and external disturbances. First, a baseline finite-time tracking controller is designed to track the desired position of the space manipulator based on the homogeneous method. Then, a finite-time disturbance observer is designed to accurately estimate the lumped uncertainties. Finally, a robust finite-time tracking controller is developed by integrating the baseline finite-time tracking controller with the finite-time disturbance observer. Rigorous theoretical analysis for the global finite-time stability of the whole closed-loop system is provided. The proposed robust finite-time tracking controller has a relatively simple structure and can guarantee the position and velocity tracking errors converge to zero in finite time even subject to lumped uncertainties. To the best of the authors’ knowledge, there are really limited existing controllers can achieve such excellent performance under the same conditions. Numerical simulations illustrate the effectiveness and superiority of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document