scholarly journals Optimal design and experimental study of fixed abrasive pads based on coupling of damping regulation and pellet arrangement

2021 ◽  
Vol 12 (1) ◽  
pp. 97-108
Author(s):  
Chaoqun Xu ◽  
Congfu Fang ◽  
Yuan Li ◽  
Chong Liu

Abstract. Lapping and polishing technology is an efficient processing method for wafer planarization processing. The structure of the fixed abrasive pad (FAP) is one of the most concerning issues in the research. The FAP structure affects the pressure distribution on the wafer surface, and the pressure distribution during processing has a significant influence on the wafer surface. Therefore, in this paper, a better pressure distribution is obtained by adjusting the angle of the spiral arrangement and the damping distribution of the damping layer of the FAP, thereby obtaining better processing quality. Based on the above theory, a new type of FAP, with coupling between the arrangement of the pellets and the damping regulation of the damping layer, was designed and optimized. The machining effects of different FAPs on the workpiece surface are compared in terms of material removal rate, material removal thickness, and surface roughness. The test results show that the workpiece material removal rate is higher than that of the traditional FAP when using the optimized FAP. The non-uniformity of the optimized FAP for that of material removal was 4.034 µm, which was lower than the traditional FAPs by 24.4 % and 17.6 %, respectively. The average surface roughness, Ra, of the optimized FAP is 0.21 µm, which is lower than 19.1 % and 12.5 % of the two traditional FAPs, respectively. Therefore, workpiece material removal and distribution are more uniform, and the surface quality of the workpiece is better when the optimized FAP processing is used. The test results prove that the optimized pellet arrangement and damping can achieve a better surface quality of the workpiece, which can meet the precision lapping process requirements for high-quality surfaces and large-scale production of brittle and hard materials such as sapphire.

2010 ◽  
Vol 431-432 ◽  
pp. 17-20 ◽  
Author(s):  
Yong Wei Zhu ◽  
Jun Li ◽  
Jun Wang ◽  
Kui Lin

The swelling ratio and the pencil hardness of pad were introduced to evaluate the properties of hydrophilic fixed abrasive (FA) pad. The effect of pad composition on its swelling ratio and pencil hardness was studied. Results show that the swelling ratio increases with the rise of content of Trimethylopropane Triacrylate (TMPTA) and Urethane Acrylate (PUA) and the pad gets harder while there is more TMPTA and less PUA. Results also show that a low swelling ratio corresponds to a high material removal rate (MRR), and a low wet pencil hardness to a low surface roughness in each group.


2009 ◽  
Vol 416 ◽  
pp. 439-442
Author(s):  
Xun Lv ◽  
Ju Long Yuan ◽  
Dong Hui Wen

Semi bonded abrasive lapping is an effective ultra-precision lapping method. It can obtain good surface quality of workpiece in short time. This paper focused on the differences of processing features by comparing semi bonded abrasive lapping and loose abrasive lapping in several groups processing parameters. The results showed that the surface roughness of workpiece in semi bonded abrasive lapping was far superior to that of loose abrasive lapping in same processing parameters. And the MRR (material removal rate) of semi bonded abrasive lapping was slightly lower than that of loose abrasive lapping. For these features of semi bonded abrasive, a new processing flow would also be proposed in this paper.


Author(s):  
Chunhui Chung ◽  
Glenn Melendez ◽  
Imin Kao

Wafers made of materials such as silicon, III-V and II-VI compounds, and optoelectronic materials, require high-degree of surface quality in order to increase the yield in micro-electronics fabrication to produce IC chips and devices. Measures of properties of surface quality of wafers include: nanotopography, surface morphology, global planarization, total thickness variation (TTV) and warp. Due to the reduction of feature size in micro-electronics fabrication, the requirements of such properties become more and more stringent. To meet such requirements, the wafer manufacturing processes of brittle semiconductor materials, such as slicing, lapping, grinding, and polishing have been continually improved. In this paper, the lapping process of wafer surface treatment is studied with experimental results of surface roughness and material removal rate. In order to improve the performance of lapping process, effects of mixed abrasive grits in the slurry of the free abrasive machining (FAM) processes are studied using a single-sided wafer-lapping machine. Under the same slurry density, experiments employing different mixing ratios of large and small abrasive grits, and various normal loadings on the wafer surface applied through a jig are conducted for parameter study. With various mixing ratios and loadings, observations and measurements such as the total amount of material removed, material removal rate, surface roughness, and relative angular velocity are presented and discussed in this paper. The experiments show that the half-half mixing ratio of abrasives removes more material than other mixing ratios under the same conditions, but with a higher surface roughness. The results of this study can provide a good reference to the FAM processes that practitioners use today by exploiting different mixing ratios and loadings of abrasive slurry in the manufacturing processes.


2010 ◽  
Vol 135 ◽  
pp. 365-369
Author(s):  
Cong Rong Zhu ◽  
Bing Hai Lv ◽  
Ju Long Yuan

To improve the machining efficiency as well as surface roughness, a series of experiments employed fixed abrasive tools are carried out for stainless steel substrate, and influences of properties of fixed abrasive tool on the lapping process are studied. It is found that the resin is the best bonding material in this study. The surface roughness under different concentration of bonding material is similar, and the material removal rate (MRR) increases as the concentration of bonding material decreases from 50% to 20%. But too little of bonding material results into low bond strength that causing low material removal rate. It is also found that higher shear strength, lower wear rate, and the shear strength of the tool with 35% bonding material is the highest. It is obvious that the surface roughness and material removal rate decline as the grit size decreases. The roughness of surface lapped with resin bonded 4000# SiC abrasive tool comes to 18nm, and the material removal rate is 0.63μm/min.


2015 ◽  
Vol 727-728 ◽  
pp. 244-247
Author(s):  
Zhu Qing Zhang ◽  
Kang Lin Xing

Through experimental study on the role of the free abrasive in chemical mechanical polishing, in this paper, four different types of abrasive which were chosen were used for the research of material removal rate(MRR) and surface quality of SiC single crystal . Finally ,Diamond abrasive which is considered was the most suitable for chemical mechanical polishing(CMP) abrasive of SiC Crystal Substrate. With diamond Particle polish pad polishing, it is draw a comparison result on the influence of the free abrasive and consolidation abrasive for the material removal rate and surface quality of 6H-SiC. The results showed that: the MRR is 140nm / min, the material removal rate if fixed abrasive chemical mechanical polishing(FA-CMP) more than three times that of traditional CMP, fixed abrasive chemical mechanical polishing pad, are involved in a large proportion of micro abrasive cutting, can greatly improve the material removal efficiency. And results from the test procedure, the FA-CMP surface has scratches after more technical problems for the polishing pad, the surface damage is relatively free of abrasive chemical mechanical polishing is more serious.


2012 ◽  
Vol 523-524 ◽  
pp. 155-160 ◽  
Author(s):  
Ya Guo Li ◽  
Yong Bo Wu ◽  
Li Bo Zhou ◽  
Hui Ru Guo ◽  
Jian Guo Cao ◽  
...  

Ultrasonic vibration assisted processing is well known for the improvement in machined surface quality and processing efficiency due to the reduced forces and tribology-generated heating when grinding hard-brittle materials. We transplanted this philosophy to chemo-mechanical fixed abrasive polishing of optical glass, namely fused silica, in an attempt to improve surface roughness and/or material removal rate. Experiments were conducted to elucidate the fundamental characteristics of chemo-mechanical fixed abrasive polishing of fused silica in the presence and absence of ultrasonic vibration on a setup with an in-house built gadget. The experimental results show that ultrasonic vibration assisted chemo-mechanical fixed abrasive polishing can yield increased material removal rate while maintaining the surface roughness of manufactured optics compared to conventional fixed abrasive polishing without ultrasonic vibration. The mechanism of material removal in fixed abrasive polishing was also delved. We found that the glass material is removed through the synergic effects of chemical and mechanical actions between abrasives and glass and the resultant grinding swarf contains ample Si element as well as Ce element, standing in stark contrast to the polisher that contains abundant Ce element and minor Si element.


2006 ◽  
Vol 315-316 ◽  
pp. 571-574 ◽  
Author(s):  
J.F. Meng ◽  
Jian Feng Li ◽  
Pei Qi Ge ◽  
R. Zhou

This article investigates the cutting of Al2O3/TiC ceramics using a fixed abrasive diamond endless wire. The effect of wire speed and feed rate on material removal rate, cutting force, surface roughness and wire wear is investigated. The cut surface of Al2O3 /TiC ceramics is studied. This study demonstrates the advantage of fixed abrasive diamond endless wire cutting of Al2O3/TiC ceramics.


1997 ◽  
Vol 476 ◽  
Author(s):  
Jianshe Tang ◽  
Carsten Unger ◽  
Yongsik Moon ◽  
David Dornfeld

AbstractLow-k dielectric material removal rate, which is significantly affected by process factors such as polishing load, wafer carrier rotation, platen rotation speed and pad age, is one of the critical issues in CMP planarization of a dielectric film when concerning productivity, throughputs and stabilization of the process, especially when trying to achieve a target polishing thickness. Scratching is another critical issue in low-k dielectric filmi CMP planarization due to the lower hardness relative to silicon dioxide. This research relates to a methodology for in-situ monitoring of the low-k dielectric material CMP planarization process, specifically for monitoring material removal rate and scratch occurrence, using acoustic emission (AE) sensing technology.Systematic investigations of CMP process variables on AE signals were carried out in this research. The sensitivity of AE to polishing load, polishing speed, wafer surface roughness (wafer pattern density) and pad roughness were verified. The results showed that, under steady state, the AE rms signal increases with increasing polishing load, polishing speed, slurry particle size, wafer surface roughness and pad roughness.Based on the research in tribology and other application fields of loose abrasive machining such as lapping and polishing, scratching was known to be caused by the presence of particles which are much larger than average slurry particles. It has been proven that scratching can be avoided or reduced by timely cleaning the slurry supply system. Therefore, to avoid scratching, one strategy is to develop an in-situ method for detecting larger particles involved in CMP process. In this paper, the high sensitivity of AE signals to the presence of larger particles during CMP was experimentally verified.


2010 ◽  
Vol 135 ◽  
pp. 30-35
Author(s):  
Feng Wei Huo ◽  
Zhu Ji Jin ◽  
Ran Zhang

The effect of surfactant in alkaline slurry for copper chemical mechanical polishing (CMP) was studied through polishing experiments with slurries containing different weight percentage of four nonionic surfactants respectively. The results indicate that properly chosen nonionic surfactants with proper weight percentage could result in little negative influence on the material removal rate, but can help to improve copper wafer surface quality significantly. Alkylphenol ethoxylates was found to be an excellent surfactant for alkaline slurry and a surface roughness of Ra 0.89nm and a material removal rate of 526 nm/min were obtained when polishing with the slurry containing 0.25 wt% alkylphenol ethoxylates, while the surface roughness and the material removal rate were Ra 1.34nm and 525 nm/min respectively when polishing with the origin slurry. The density of polishing defects such as scratches and etch pits decreased significantly. The action mechanism of surfactant was further analyzed based on the experiment results.


2013 ◽  
Vol 703 ◽  
pp. 90-93
Author(s):  
Jian Xiu Su ◽  
Zhu Qing Zhang ◽  
Xing Long Liu ◽  
Zhi Xiang Liu ◽  
Qi Gao Feng

SiC crystal substrate has been widely applied in the field of semiconductor industry and optical components recently,such as IC and semiconductor lighting. In this paper, according to orthogonal design, the composition selection and optimization of chemical mechanical polishing (CMP) slurry based on alumina (Al2O3) abrasive had been done in CMP SiC crystal substrate (0001) Si surface by a lot of tests. A CMP slurry based on alumina (Al2O3) abrasive for SiC crystal substrate (0001) Si surface had been obtained. According to the CMP test results, the material removal rate (MRR) is about 3 nm/min and the surface roughness Ra is about 0.198μm.


Sign in / Sign up

Export Citation Format

Share Document