Comparison of Processing Features between Semi Bonded Abrasive Lapping and Loose Abrasive Lapping

2009 ◽  
Vol 416 ◽  
pp. 439-442
Author(s):  
Xun Lv ◽  
Ju Long Yuan ◽  
Dong Hui Wen

Semi bonded abrasive lapping is an effective ultra-precision lapping method. It can obtain good surface quality of workpiece in short time. This paper focused on the differences of processing features by comparing semi bonded abrasive lapping and loose abrasive lapping in several groups processing parameters. The results showed that the surface roughness of workpiece in semi bonded abrasive lapping was far superior to that of loose abrasive lapping in same processing parameters. And the MRR (material removal rate) of semi bonded abrasive lapping was slightly lower than that of loose abrasive lapping. For these features of semi bonded abrasive, a new processing flow would also be proposed in this paper.

2016 ◽  
Vol 874 ◽  
pp. 158-166
Author(s):  
Run Chen ◽  
Jia Bin Lu ◽  
Qiu Sheng Yan ◽  
Xiao Lan Xiao ◽  
De Yuan Li

The polishing experiments of anodic oxide film of aluminum were performed to research the influence of polishing parameters on the surface roughness and material removal rate in the cluster magnetorheological finishing (MRF). Experimental results demonstrate that a mirror effect can be reached when the anodic oxide film of aluminum is polished by the Cluster MRF. The roughness of the workpiece surface after polishing for 15 min is decreased from Ra 0.575μm to Ra 4.13nm and the material removal rate is 0.653mg/min. With the extension of the polishing time, the surface roughness rapidly declines at first and then slowly decreases. When the machining time is more than 15min, the anodic oxide film of aluminum is easily worn out, resulting in a sharp increase in the surface roughness. The machining gap between the workpiece and the polishing plate influences the polishing effect of anodic oxide film of aluminum. With the increase of the machining gap, the material removal rate decreases and the surface roughness increases. A good surface quality can be got at the machining gap of 1.1mm. The type and size of abrasive particles will directly affect the polishing effect of anodic oxide film of aluminum, and when using CeO2 abrasive with the particle size of W3, a higher material removal rate and a smaller surface roughness can be obtained.


2021 ◽  
Vol 12 (1) ◽  
pp. 97-108
Author(s):  
Chaoqun Xu ◽  
Congfu Fang ◽  
Yuan Li ◽  
Chong Liu

Abstract. Lapping and polishing technology is an efficient processing method for wafer planarization processing. The structure of the fixed abrasive pad (FAP) is one of the most concerning issues in the research. The FAP structure affects the pressure distribution on the wafer surface, and the pressure distribution during processing has a significant influence on the wafer surface. Therefore, in this paper, a better pressure distribution is obtained by adjusting the angle of the spiral arrangement and the damping distribution of the damping layer of the FAP, thereby obtaining better processing quality. Based on the above theory, a new type of FAP, with coupling between the arrangement of the pellets and the damping regulation of the damping layer, was designed and optimized. The machining effects of different FAPs on the workpiece surface are compared in terms of material removal rate, material removal thickness, and surface roughness. The test results show that the workpiece material removal rate is higher than that of the traditional FAP when using the optimized FAP. The non-uniformity of the optimized FAP for that of material removal was 4.034 µm, which was lower than the traditional FAPs by 24.4 % and 17.6 %, respectively. The average surface roughness, Ra, of the optimized FAP is 0.21 µm, which is lower than 19.1 % and 12.5 % of the two traditional FAPs, respectively. Therefore, workpiece material removal and distribution are more uniform, and the surface quality of the workpiece is better when the optimized FAP processing is used. The test results prove that the optimized pellet arrangement and damping can achieve a better surface quality of the workpiece, which can meet the precision lapping process requirements for high-quality surfaces and large-scale production of brittle and hard materials such as sapphire.


2006 ◽  
Vol 505-507 ◽  
pp. 1219-1224 ◽  
Author(s):  
Pei Lum Tso ◽  
Bo Huei Yan ◽  
Chan Hsing Lo

Presently, the loose abrasive wire saw is the most commonly used technique for slicing hard and brittle materials. However its productivity is relatively low. A diamond wire saw has been developed for slicing brittle materials such as silicon wafer. The objects of this paper is to make the thin diamond wire saw apply to high cost production in semiconductor industries with the effective processing parameters such as machined surface roughness, material removal rate, the wear of the wire and the kerf width of the slicing. Effects of processing parameters on the performance of the diamond wire sawing processes are investigated by using the Taguchi method for this design of experiment (DOE). The analysis of the result shows that the optimal combinations for good surface roughness are small grain size, high wire speed, and low feed rate. Wire speed and feed rate are positively related to material removal rate.


Author(s):  
Mustafa Mohammed Abdulrazaq ◽  
Adil Shabeeb Jaber ◽  
Ahmed Salman Hammood ◽  
Ahmed Ghazi Abdulameer

The objective of this work is the investigation of milling process variables which resulting in optimal values of the surface roughness and material removal rate during machining of 7024 Al-alloy. The machining operation implemented on C-TEK CNC milling machine. The effects of the selected parameters on the chosen characteristics have been accomplished using Taguchi’s parameter design approach; also ANOVA had been used to evaluate the contribution of each parameter on the process outputs. Different feed rates are used ranging from (60, 80 and 100) mm/min, found that high feed rates gives a high material removal rates and good surface roughness. On the other hand, using three levels of spindle speeds found that a higher spindle speeds gives better surface roughness with a little effect on MRR. The process results showed that maximum MRR achieved (2.40) mm3/min when machining feed rate (100) mm/min, spindle speed (1000) r.p.m, and depth of cut (0.6) mm while good surface roughness (0.41 µm) when machining feed rate (100) mm/min, spindle speed (1000) r.p.m, and depth of cut (0.2) mm. The level of importance of the machining parameters for material removal rate and surface roughness and is determined by using Taguchi designing experiments and the variance analysis (ANOVA).


2009 ◽  
Vol 69-70 ◽  
pp. 282-286
Author(s):  
Zhao Zhong Zhou ◽  
Ju Long Yuan ◽  
Bing Hai Lv

Aluminum nitride (AlN) ceramic has excellent electrical insulation and dielectric properties. The ultra-precision lapping and polishing techniques for the AlN substrate are studied in this paper, and the influence of the lapping parameters such as load and slurry on the surface roughness, material removal rate of AlN is discussed. The surface of workpiece after processing is observed with microscope to analyze the material removal mechanism. An extremely smooth surface with roughness 6nm Ra is obtained after the finishing process. It is also found that the gap between grains will decrease the precision and quality of AlN substrate.


2014 ◽  
Vol 1027 ◽  
pp. 68-71 ◽  
Author(s):  
Jian Bin Wang ◽  
Yong Wei Zhu ◽  
Jun Xu ◽  
Zhan Kui Wang ◽  
Ji Hua Miao

The processing technology of sapphire with a high material removal rate a good surface quality is critical for its applications. The experiment of sapphire lapping and polishing was carried out by using three different fixed abrasive pad (FAP). Their material removal rate (MRR) and surface roughness (Ra) were measured and analyzed. Results indicate that a MRR of 5.6μm/min reaches in rough lapping and a MRR of 0.4μm/min in fine lapping. The average surface roughness Ra of rough lapping and fine lapping is 142nm and 1.2nm respectively. The processing efficiency of sapphire wafer is effectively improved and a good surface quality is obtained when FAP adopted.


Author(s):  
Amritpal Singh ◽  
Rakesh Kumar

In the present study, Experimental investigation of the effects of various cutting parameters on the response parameters in the hard turning of EN36 steel under the dry cutting condition is done. The input control parameters selected for the present work was the cutting speed, feed and depth of cut. The objective of the present work is to minimize the surface roughness to obtain better surface finish and maximization of material removal rate for better productivity. The design of experiments was done with the help of Taguchi L9 orthogonal array. Analysis of variance (ANOVA) was used to find out the significance of the input parameters on the response parameters. Percentage contribution for each control parameter was calculated using ANOVA with 95 % confidence value. From results, it was observed that feed is the most significant factor for surface roughness and the depth of cut is the most significant control parameter for Material removal rate.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


2020 ◽  
Vol 38 (9A) ◽  
pp. 1352-1358
Author(s):  
Saad K. Shather ◽  
Abbas A. Ibrahim ◽  
Zainab H. Mohsein ◽  
Omar H. Hassoon

Discharge Machining is a non-traditional machining technique and usually applied for hard metals and complex shapes that difficult to machining in the traditional cutting process. This process depends on different parameters that can affect the material removal rate and surface roughness. The electrode material is one of the important parameters in Electro –Discharge Machining (EDM). In this paper, the experimental work carried out by using a composite material electrode and the workpiece material from a high-speed steel plate. The cutting conditions: current (10 Amps, 12 Amps, 14 Amps), pulse on time (100 µs, 150 µs, 200 µs), pulse off time 25 µs, casting technique has been carried out to prepare the composite electrodes copper-sliver. The experimental results showed that Copper-Sliver (weight ratio70:30) gives better results than commonly electrode copper, Material Removal Rate (MRR) Copper-Sliver composite electrode reach to 0.225 gm/min higher than the pure Copper electrode. The lower value of the tool wear rate achieved with the composite electrode is 0.0001 gm/min. The surface roughness of the workpiece improved with a composite electrode compared with the pure electrode.


Sign in / Sign up

Export Citation Format

Share Document