scholarly journals Roadway backfill method to prevent geo-hazards induced by room and pillar mining: a case study in Changxing coal mine, China

2016 ◽  
Author(s):  
Jixiong Zhang ◽  
Meng Li ◽  
Nan Zhou ◽  
Rui Gao

Abstract. Coal mines in the western areas of China experience low mining rates and induce many geo-hazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilisation for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimised to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm/m, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.

2016 ◽  
Vol 16 (12) ◽  
pp. 2473-2484 ◽  
Author(s):  
Nan Zhou ◽  
Meng Li ◽  
Jixiong Zhang ◽  
Rui Gao

Abstract. Coal mines in the western areas of China experience low mining rates and induce many geohazards when using the room and pillar mining method. In this research, we proposed a roadway backfill method during longwall mining to target these problems. We tested the mechanical properties of the backfill materials to determine a reasonable ratio of backfill materials for the driving roadway during longwall mining. We also introduced the roadway layout and the backfill mining technique required for this method. Based on the effects of the abutment stress from a single roadway driving task, we designed the distance between roadways and a driving and filling sequence for multiple-roadway driving. By doing so, we found the movement characteristics of the strata with quadratic stabilization for backfill mining during roadway driving. Based on this research, the driving and filling sequence of the 3101 working face in Changxing coal mine was optimized to avoid the superimposed influence of mining-induced stress. According to the analysis of the surface monitoring data, the accumulated maximum subsidence is 15 mm and the maximum horizontal deformation is 0.8 mm m−1, which indicated that the ground basically had no obvious deformation after the implementation of the roadway backfill method at 3101 working face.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Xiaoshuang Li ◽  
Zhifang Liu ◽  
Shun Yang

Gently inclined medium-thick orebodies are generally recognized as the most difficult type of orebody to mine, using current available strategies (i.e., the room and pillar method). In the present study, a similar physical model was used to investigate the roof stress and subsidence for mining gently inclined medium-thick phosphate rock from the Jinning Phosphate Mine, Yunnan Province, China. The stress field, displacement field, and roof failure evolution characteristics of the surrounding rock with stope structures of 3 m, 5 m, or 8 m ore pillars were considered. The results showed that, after mining stopped, obvious pressure relief areas formed above the three stope structures, and pressure-bearing areas formed at the front of the roof. With extending the mining in the working face, the stress relief boundary also gradually increased, and the top of the roof tended to sink with a maximum subsidence of –14.58 mm, –4.67 mm, and –3.48 mm. Due to the mining activity, the overlying strata bent and subsided from top to bottom, creating bending subsidence, fracture, and caving zones.


Author(s):  
Rui Wu ◽  
Penghui Zhang ◽  
Pinnaduwa H. S. W. Kulatilake ◽  
Hao Luo ◽  
Qingyuan He

AbstractAt present, non-pillar entry protection in longwall mining is mainly achieved through either the gob-side entry retaining (GER) procedure or the gob-side entry driving (GED) procedure. The GER procedure leads to difficulties in maintaining the roadway in mining both the previous and current panels. A narrow coal pillar about 5–7 m must be left in the GED procedure; therefore, it causes permanent loss of some coal. The gob-side pre-backfill driving (GPD) procedure effectively removes the wasting of coal resources that exists in the GED procedure and finds an alternative way to handle the roadway maintenance problem that exists in the GER procedure. The FLAC3D software was used to numerically investigate the stress and deformation distributions and failure of the rock mass surrounding the previous and current panel roadways during each stage of the GPD procedure which requires "twice excavation and mining". The results show that the stress distribution is slightly asymmetric around the previous panel roadway after the “primary excavation”. The stronger and stiffer backfill compared to the coal turned out to be the main bearing body of the previous panel roadway during the "primary mining". The highest vertical stresses of 32.6 and 23.1 MPa, compared to the in-situ stress of 10.5 MPa, appeared in the backfill wall and coal seam, respectively. After the "primary mining", the peak vertical stress under the coal seam at the floor level was slightly higher (18.1 MPa) than that under the backfill (17.8 MPa). After the "secondary excavation", the peak vertical stress under the coal seam at the floor level was slightly lower (18.7 MPa) than that under the backfill (19.8 MPa); the maximum floor heave and maximum roof sag of the current panel roadway were 252.9 and 322.1 mm, respectively. During the "secondary mining", the stress distribution in the rock mass surrounding the current panel roadway was mainly affected by the superposition of the front abutment pressure from the current panel and the side abutment pressure from the previous panel. The floor heave of the current panel roadway reached a maximum of 321.8 mm at 5 m ahead of the working face; the roof sag increased to 828.4 mm at the working face. The peak abutment pressure appeared alternately in the backfill and the coal seam during the whole procedure of "twice excavation and mining" of the GPD procedure. The backfill provided strong bearing capacity during all stages of the GPD procedure and exhibited reliable support for the roadway. The results provide scientific insight for engineering practice of the GPD procedure.


2021 ◽  
Vol 113 ◽  
pp. 103972
Author(s):  
Chao Zhang ◽  
Gaohan Jin ◽  
Chao Liu ◽  
Shugang Li ◽  
Junhua Xue ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 406-410
Author(s):  
Gui Liu ◽  
Hua Xing Zhang ◽  
Jin Hui Chen ◽  
Chao Gao

By making full use of the advantages of strip mining method and full-pillar mining method, the wide strip and full-pillar mining method can achieve the aim of mining under villages. However, at the full-pillar mining stage, the difficulty in managing several workfaces which are at work at the same time still exists. To improve the wide strip and full-pillar mining method’s applicability, an optimization of extraction sequence for coal pillars instead of the multi-working-face is put forward at the stage of full-pillar mining, and in the case of the deformation limit of surface structures is satisfied, to extract all the coal pillars which are under villages. By specific analysis of the extraction sequence optimization of the coal pillars in No.1 mine under Qian Xudapo village which belongs to Chang Chun coal Co., LTD., a better result is got which also acts a technological reference for the extraction under villages.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fengnian Wang ◽  
Shizhuang Chen ◽  
Pan Gao ◽  
Zhibiao Guo ◽  
Zhigang Tao

In this study, the deformation characteristics and mechanical properties of coal and rock mass in the S2N5 working face of the Xiaokang coal mine are analyzed to address the problem of large deformation of soft rocks with high in situ stress surrounding roadways. Through a newly developed grouting pipe, a double-shell grouting technology, consisting of low-pressure grouting and high-pressure split grouting, is proposed for the Xiaokang coal mine. In addition, the effect of grouting is evaluated by borehole peeping and deformation monitoring. The results show that the double-shell grouting technology can effectively improve the overall mechanical properties of the surrounding coal and rock mass, preventing the large deformation and failure of the roadway. This technology can be useful when analyzing and preventing large deformation of soft rock roadways.


Sign in / Sign up

Export Citation Format

Share Document