scholarly journals Contribution of the Sensitivity Analysis in Groundwater Vulnerability Assessing Using the DRASTIC and Composite DRASTIC Indexes

2019 ◽  
Author(s):  
Mohammad Malakootian ◽  
Majid Nozari

Abstract. The present study estimates Kerman–Baghin aquifer vulnerability by applying the DRASTIC and composite DRASTIC (CDRASTIC) indexes. The factors affecting the transfer of contamination, including the water table depth, soil media, aquifer media, the impact of the vadose zone, topography, hydraulic conductivity, and land use, were ranked, weighted, and integrated using a geographical information system (GIS). A sensitivity test has also been performed to specify the sensitivity of the parameters. The study results show that the topographic layer displays a gentle slope in the aquifer. The majority of the aquifer covered irrigated field crops and grassland with a moderate vegetation cover. In addition, the aquifer vulnerability maps indicate very similar results, recognizing the northwest parts of the aquifer as areas with high and very high vulnerability. The map removal sensibility analysis (MRSA) revealed the impact of the vadose zone (in the DRASTIC index) and hydraulic conductivity (in the CDRASTIC index) as the most effective parameters in the vulnerability evaluation. In both indexes, the single-parameter sensibility analysis (SPSA) showed net recharge as the most effective factor in the vulnerability estimation. From this study, it can be concluded that vulnerability maps can be used as a tool to control human activities for the sustained protection of aquifers.

2020 ◽  
Vol 20 (8) ◽  
pp. 2351-2363
Author(s):  
Mohammad Malakootian ◽  
Majid Nozari

Abstract. The present study estimates the Kerman–Baghin aquifer vulnerability using DRASTIC and composite DRASTIC (CDRASTIC) indices with the aid of geographic information system (GIS) techniques. Factors affecting the transfer of contamination, including water table depth, soil media, aquifer media, the impact of the vadose zone, topography, hydraulic conductivity, and land use, were used to calculate the DRASTIC and CDRASTIC indices. A sensitivity test was also performed to determine the sensitivity of the parameters. Results showed that the topographic layer displays a gentle slope in the aquifer. Most of the aquifer was covered with irrigated field crops and grassland with a moderate vegetation cover. In addition, the aquifer vulnerability maps indicated very similar results, identifying the north-west parts of the aquifer as areas with high to very high vulnerability. The map removal sensibility analysis (MRSA) revealed the impact of the vadose zone (in the DRASTIC index) and hydraulic conductivity (in the CDRASTIC index) as the most important parameters in vulnerability evaluation. In both indices, the single-parameter sensibility analysis (SPSA) demonstrated net recharge as the most effective factor in vulnerability estimation. According to the results, parts of the studied aquifer have a high vulnerability and require protective measures.


2017 ◽  
Vol 15 (1-2) ◽  
Author(s):  
Santosh V. Bhaskar ◽  
Hari N. Kudal

<p>Components of forming tool dies such as draw ring, ejector pin use AISI 4140 as material for their manufacturing. The integrity of the die cutting tools is essential to achieve adequate product quality. In present study, the influence of plasma nitriding (PN) on the wear behav-iour of AISI 4140 steel was investigated. Full factorial experimental design technique was used to study the main effects and the interaction effects between operational parameters and the response variable. The control factors at their two levels (-1 and +1) were: applied load (4.905N and 14.715N), sliding speed (3.14 m/s and 5.23 m/s), and sliding distance (500m and 1000m).The parameters were coded as A, B, and C, consecutively, and were investigated at two levels (-1 and +1). Response selected was Wear Volume Loss (WVL). The effects of in-dividual variables and their interaction effects for dependent variables, namely, WVL were determined. The process of selecting significant factors, based on statistical tools, is illustrat-ed. Analysis of Variance (ANOVA) was performed to know the impact of individual factors on the WVL. Untreated and PN treated AISI 4140 specimens were investigated using field emission Scanning Electron Microscope (SEM) equipped with Energy Dispersive X-ray (EDX) analyzer. Finally diagnostics tools were used to check adequacy of the model in terms of assumptions of ANOVA. ‘Design Expert-7’ and ‘Minitab 17’ softwares were used in the study. Results of statistical analysis indicate that the most effective parameters in the WVL were load and sliding speed. The interaction between load and sliding speed was the most influencing interaction. Results of regression analysis indicate regression coefficient (R2) to be above 90% which suggests good predictability of the model. ‘Predicted-R2’ and ‘Adjusted-R2’, found to be in good agreement with R2, for both the materials under investigation. More-over, results of SEM microscopy suggest PN to be an effective technique to reduce wear.</p>


2021 ◽  
Author(s):  
Miguel Moreno-Gómez ◽  
Carolina Martínez-Salvador ◽  
Rudolf Lied ◽  
Catalin Stefan ◽  
Julia Pacheco

Abstract. Groundwater vulnerability maps are important decision support tools for water resources protection against pollution and helpful to minimize environmental damage. However, these tools carry a high subjectivity along the multiple steps taken for the development of such maps. Additionally, the theoretical models on which they are based do not consider important parameters such as pollutant concentration or pollutant residence time in a given section of the aquifer, solely focusing the analysis on a theoretical travel time from a release point towards a target. In this work, an integrated methodology for the evaluation of potential (intrinsic) and actual vulnerability is presented. This integrated method, named IKAV, was developed after the analysis of several study cases and the application of multiple intrinsic groundwater vulnerability methods in a selected study area. Also, a solute transport model served as the basis to define additional parameters for vulnerability analysis for areas severely affected by anthropogenic practices. A defined workflow and several criteria for parameters and attributes selection, rating and weighting assignment, and vulnerability classification are presented. The first application of the IKAV method was carried out in the Yucatan karst, demonstrating to be a reliable method for vulnerability estimation. Results demonstrated the scope of the IKAV method to highlight important regional conditions, minimizing the subjectivity, and expanding the analysis of vulnerability.


2018 ◽  
Vol 54 ◽  
pp. 00023 ◽  
Author(s):  
Dawid Potrykus ◽  
Anna Gumuła-Kawęcka ◽  
Beata Jaworska-Szulc ◽  
Małgorzata Pruszkowska-Caceres ◽  
Adam Szymkiewicz ◽  
...  

In this research, GALDIT method was used to assess seawater intrusion in the coastal aquifer of the inner Puck Bay (Southern Baltic Sea). The impact of potential sea-level rise on groundwater vulnerability for years 2081-2100 was also considered. The study area was categorized into three classes of vulnerability: low, moderate and high. The most vulnerable area is the Hel Peninsula with northern part of the Kashubian Coastland. Increased class of aquifer vulnerability is also adopted to glacial valleys. The results of this research revealed that about 18.9% of the analyzed area is highly vulnerable to seawater intrusion, 25.3% is moderately vulnerable and 55.8% is potentially at low risk. The simulated scenario of predicted sea level rise shows enlargement of high vulnerability areas.


2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.


2017 ◽  
Vol 28 (3) ◽  
pp. 384-399
Author(s):  
Nadjet Zair ◽  
Salah Chaab ◽  
Catherine Bertrand

Purpose The purpose of this paper is to assess the vulnerability of the aquifer using two models of analysis (DRASTIC and GOD) that were applied in practice in the regions of Bir Chouhada, Souk Naamane and Ouled Zouai in the district of Oum El-Bouaghi. Design/methodology/approach This study aims to determine the most adequate methods to ensure the protection of the Bir Chouhada, Souk Naamane and Ouled Zouai aquifer from pollution using vulnerability assessment. The application of the DRASTIC and GOD models made this evaluation possible. Findings The analysis of the both maps of vulnerability, resulting from the application of the two methods (DRASTIC and GOD), has revealed several classes of vulnerability that are no-, low-, medium- and high-vulnerable area. High DRASTIC vulnerability values vary between 145 and 178, and those of GOD vary between 0.07 and 0.57. It is observed that vulnerability increases from the center toward the eastern part of the plain; this is confirmed by the repartition of nitrate contents. The impact of the hydraulic conductivity on vulnerability to pollution is more significant than those of the vadose zone and the aquifer media. This is well observed when considering the single-parameter sensitivity analysis. Originality/value The text deepens the understanding of the vulnerability assessment and quality of the aquifer and the groundwater. The present study can be used for the assessment and the management of groundwater.


2013 ◽  
Vol 66 (1) ◽  
pp. 49-58 ◽  
Author(s):  
Cátia Marisa Fraga ◽  
Luís Filipe Sanches Fernandes ◽  
Fernando António Leal Pacheco ◽  
Cristina Reis ◽  
João Paulo Moura

Two simple methods of aquifer vulnerability assessment were used in this study: the GOD and AVI methods. The main purpose was to appraise their faithfulness as exploratory techniques, and their applicability to the scale of a small watershed. The study area was the Sordo River Basin (area: 50 km2), located in the Northeast of Portugal. To measure accuracy, model results were compared with vulnerability maps previously obtained for the basin, but using the standard DRASTIC model. Results of the GOD method were a map dominated by class "low vulnerability" where parameter O (overlying strata) imprinted its signature, very similar to the DRASTIC map but with smaller resolution. The method was considered valuable for exploration of primary factors of aquifer vulnerability (e.g. discrimination between water table and confined aquifers) but not for description of secondary factors (e.g. nuances in the degree of confinement). The application of the AVI method was proven inefficient because the resulting map indicated the presence of a single unrealistic class ("extremely high vulnerability"). The reason was that AVI results are evaluated on a logarithmic scale, which is appropriate for studies at regional scales where the settings are very diverse, but inappropriate for studies on the small watershed scale.


2017 ◽  
Vol 17 (1) ◽  
pp. 18-30
Author(s):  
A. Ewusi ◽  
I. Ahenkorah ◽  
J. S. Y. Kuma

Groundwater vulnerability assessment to delineate areas that are susceptible to contamination from mining and anthropogenic activities has become an important element for resource management and landuse planning. In view of the extensive mining in the Tarkwa area, quality of groundwater has become an important issue. This study estimates aquifer vulnerability by applying the SINTACS model which uses seven environmental parameters to evaluate aquifer vulnerability and geographical information system (GIS) in the Tarkwa mining area. Sensitivity analysis has also been carried out to evaluate the relative importance of the model parameters for aquifer vulnerability. The SINTACS model results show that the intrusive rocks within the Tarkwaian and the Birimian rocks are dominated by very high vulnerability classes while the Banket Series is characterised by high vulnerability class. The Huni Sandstones have moderately high vulnerability. In addition, the Kawere Group and the Tarkwa Phyllites displayed medium vulnerability. Analysis from the variogram model shows that all parameters used in the SINTACS model have a strong spatial structure. From statistical analysis, depth to water parameter inflicted the highest impact on the vulnerability of the aquifer followed by effective infiltration, vadose zone media, soil media, aquifer media, topography and hydraulic conductivity in the order of decreasing impact. Sensitivity analysis indicated that the aquifer media, hydraulic characteristics and topography cause large variation in vulnerability index. Depth to water and effective infiltration were found to be more effective in assessing aquifer vulnerability. Keywords: Groundwater, Vulnerability, Tarkwa, SINTACS, GIS


2016 ◽  
Vol 20 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Johnny Colins ◽  
M. C. Sashikkumar ◽  
P. A. Anas ◽  
M. Kirubakaran

<p>Groundwater is vulnerable and more susceptible to contamination from various anthropogenic elements. Various steps are taken to measure the groundwater vulnerability for a sustainable groundwater development. The present study estimates the aquifer vulnerability by applying DRASTIC model in the Geographic Information System (GIS) environment. The DRASTIC model uses seven hydrological parameters which include depth to water level, net recharge, aquifer media, soil media, topography, the impact of vadose zone and hydraulic conductivity. DRASTIC index was calculated from DRASTIC model that ranged from 31 to 154. All these parameters characterize the hydrological setting for evaluating aquifer vulnerability. Sensitivity analyses have also been performed to determine the sensitivity of every individual DRASTIC parameter towards the aquifer vulnerability. Sensitivity analysis indicated that all the parameters have an almost similar influence on vulnerability index. Depth to water parameter inflicts larger impact on aquifer vulnerability followed by recharge, topography and soil Media. The whole of Kodaganar basin is classified into very low, low, moderate and high vulnerable zones. Nearly three- fourth of the basin has very low and low vulnerability. Incorporating DRASTIC model in the GIS environment has proved efficient in handling large volumes of data and in determining the groundwater vulnerability. </p><p> </p><div class="page" title="Page 1"><div class="section"><div class="layoutArea"><div class="column"><p><strong>Evaluación basada en el Sistema de Información Geográ ca a la vulnerabilidad de un acuífero a partir del método DRASTIC: caso de estudio en la cuenca Kodaganar </strong></p><p><strong><br /></strong></p><p><strong>Resumen</strong></p><p>El agua subterránea es vulnerable y más susceptible a la contaminación de varios elementos antropogénicos. Se midió la vulnerabilidad del agua subterránea en varias etapas para establecer el desarrollo sustentable de la fuente acuífera. Este trabajo estima la vulnerabilidad del agua subterránea por la aplicación del método DRASTIC en el entorno del Sistema de Información Geográfica (GIS, en inglés). El método DRASTIC utiliza siete parámetros hidrológicos: profundidad del agua subterránea, recarga neta, litología del acuífero, tipo de suelo, topografía naturaleza de la zona no saturada y conductividad hidráulica del acuífero. El índice DRASTIC fue calculado a través de este método y que oscila entre 31 y 154 unidades. Estos parámetros caracterizan la configuración hidrológica para la evaluación de vulnerabilidad del acuífero. También se realizaron los análisis de susceptibilidad para determinar la respuesta de cada parámetro DRASTIC frente a la vulnerabilidad del agua subterránea. El análisis de susceptibilidad indicó que todos los parámetros tienen una influencia similar en el índice de vulnerabilidad. El parámetro de profundidad ocasiona un mayor impacto en el índice de vulnerabilidad, seguido por la recarga, la topografía y el tipo de suelo. Toda la cuenca de Kodaganar se clasifica en zonas de vulnerabilidad muy baja, baja, moderada y alta. La incorporación del método DRASTIC en el entorno GIS prueba la e ciencia en el manejo de grandes volúmenes de información y en la evaluación de vulnerabilidad de aguas subterráneas.</p>


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1610 ◽  
Author(s):  
Moreno-Gómez ◽  
Martínez-Salvador ◽  
Moulahoum ◽  
Liedl ◽  
Stefan ◽  
...  

Karst groundwater vulnerability maps are important tools for the development of groundwater management and protection strategies. However, current methodologies do not always match regional characteristics and parameter adaptations are necessary. In addition, other important processes such as dilution and aquifer residence time are not included in vulnerability analysis for the complications of evaluating two or more criteria simultaneously. The integrated karst aquifer vulnerability approach (IKAV) project aims to develop an integrated approach to include these parameters and estimate global change implications in current and future scenarios. As a first step, intrinsic vulnerability methodologies are studied in order to highlight important parameters and the congruence with regional characteristics of the Yucatan karst. Results demonstrate agreement between methods for the evaluation of high and very high vulnerabilities and their relation with fissures and dolines. Moderate vulnerabilities are assigned to more than 50% of the area. However, moderate vulnerabilities, assigned to the coastal area and the Southern hill, are highly questionable. Intrinsic features affecting moderate classes vary according to the method. Parameter sensitivity analysis and overlap analysis demonstrate the influence of depth to the unsaturated zone, soils, precipitation, and slope on moderate values. Therefore, such parameters must be re-evaluated and discretized according to the characteristics of the study area to match Yucatan regional characteristics.


Sign in / Sign up

Export Citation Format

Share Document