Modeling fluid flow through complex fracture network in geological media by using hierarchical hydraulic properties

Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>

2020 ◽  
Vol 205 ◽  
pp. 03007
Author(s):  
Yejin Kim ◽  
Seong Jun Ha ◽  
Tae sup Yun

Hydraulic stimulation has been a key technique in enhanced geothermal systems (EGS) and the recovery of unconventional hydrocarbon resources to artificially generate fractures in a rock formation. Previous experimental studies present that the pattern and aperture of generated fractures vary as the fracking pressure propagation. The recent development of three-dimensional X-ray computed tomography allows visualizing the fractures for further analysing the morphological features of fractures. However, the generated fracture consists of a few pixels (e.g., 1-3 pixels) so that the accurate and quantitative extract of micro-fracture is highly challenging. Also, the high-frequency noise around the fracture and the weak contrast across the fracture makes the application of conventional segmentation methods limited. In this study, we adopted an encoder-decoder network with a convolutional neural network (CNN) based on deep learning method for the fast and precise detection of micro-fractures. The conventional image processing methods fail to extract the continuous fractures and overestimate the fracture thickness and aperture values while the CNN-based approach successfully detects the barely seen fractures. The reconstruction of the 3D fracture surface and quantitative roughness analysis of fracture surfaces extracted by different methods enables comparison of sensitivity (or robustness) to noise between each method.


2020 ◽  
Author(s):  
Rike Köpke ◽  
Olivier Lengliné ◽  
Jean Schmittbuhl ◽  
Emmanuel Gaucher ◽  
Thomas Kohl

<p>In a geothermal reservoir, seismicity may be induced due to changes in the subsurface as a result of drilling, stimulation or circulation operations. The induced seismic events are therefore strongly linked to the fluid flow, the mechanical state of the reservoir and the geological structures that impact the stress field and make this fluid flow possible. Here, the study is based on the monitoring of the development and operation of the deep geothermal site at Rittershoffen (Alsace, France) using different seismic networks covering various operational periods from September 2012 to present, including the drilling of the well doublet GRT1/GRT2, stimulation of GRT1 and well testing. The seismicity induced by these operations has the potential to give valuable insight into the geomechanical behaviour of the reservoir and the geometry of the fracture network. The present study gives an overview of the spatial and temporal development of the induced seismicity and the magnitudes of the events to provide insights into active structures in the reservoir.</p><p> </p><p>To improve the level of detection, we first apply a template matching algorithm to the continuous waveforms recorded by the seismic networks. After running the detection with the template matching, the relative locations of all detected events are calculated as well as relative magnitudes. This workflow is applied to the whole time period from the start of the drilling in 2012 up to 2017. The spatial and temporal evolution of the events and their magnitudes shows how the different operations during reservoir development influence the seismogenic development of the reservoir and the seismic activity during continuous operation of the site. Further analysis like b-value computation, estimation of the best-fitting planes to the seismic clouds and evaluation of the waveform correlation between the seismic events give insight into the processes that induced the seismicity and the relation between different seismic intervals.</p><p> </p><p>Focus of the present study is on the similarities and differences in the seismic response of the reservoir to the three subsequent stimulations of GRT1, called thermal, chemical and hydraulic stimulation. Results show that the seismicity induced during the hydraulic stimulation is much stronger in terms of seismicity rate and magnitudes than seismicity induced during thermal stimulation and migrates further into the reservoir. Noticeably, after a seismically quiet period of four days after the hydraulic stimulation a short burst of seismicity occurred unrelated to any operations on site. Seismicity during this delayed interval proved to have quite distinct characteristics from the seismicity induced during injection. While no significant seismicity was induced during chemical stimulation, the operation may have had an important influence on the seismic response of the reservoir during hydraulic stimulation by changing the state of the present fracture network.</p>


2020 ◽  
Author(s):  
Giampaolo Proietti ◽  
Valentina Romano ◽  
Alessia Conti ◽  
Maria Chiara Tartarello ◽  
Sabina Bigi

<p>Fracture networks exist at a wide range of scale in the earth crust and strongly influence the hydraulic behaviour of rocks, providing either pathways or barriers for fluid flow. Many oil, gas, geothermal and water supply reservoirs form in fractured rocks. The main challenge is the development of numerical models that describe adequately the fracture networks and the constitutive equations governing the physical processes in fractured reservoir. The hydraulic properties of fracture networks, derived from Discrete Fracture Network (DFN), models are commonly used to populate continuum equivalent models at reservoir scale, to reduce the computational cost and the numerical complexity. However, the efficiency of fracture networks to fluid flow is strongly tied to their connectivity and spatial distribution, that continuum models are not able to capture explicitly.In this work we used field data and synthetic models to introduce a new parameter to evaluate the efficiency of fracture networks to fluid flow, reflecting a range of variability in fracture network characteristics (e.g. P32, number of fractures, stress field). This alternative method allows to model fractured systems at reservoir scale, in a variety of geological settings, using exclusively a DFN approach.</p>


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 627-655 ◽  
Author(s):  
Linus Villiger ◽  
Valentin Samuel Gischig ◽  
Joseph Doetsch ◽  
Hannes Krietsch ◽  
Nathan Oliver Dutler ◽  
...  

Abstract. We performed a series of 12 hydraulic stimulation experiments in a 20m×20m×20m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: (i) ductile ones with intense foliation and (ii) brittle–ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydromechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b values, and spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle–ductile shear zones, while the injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5725
Author(s):  
Rafał Moska ◽  
Krzysztof Labus ◽  
Piotr Kasza

Hydraulic fracturing (HF) is a well-known stimulation method used to increase production from conventional and unconventional hydrocarbon reservoirs. In recent years, HF has been widely used in Enhanced Geothermal Systems (EGS). HF in EGS is used to create a geothermal collector in impermeable or poor-permeable hot rocks (HDR) at a depth formation. Artificially created fracture network in the collector allows for force the flow of technological fluid in a loop between at least two wells (injector and producer). Fluid heats up in the collector, then is pumped to the surface. Thermal energy is used to drive turbines generating electricity. This paper is a compilation of selected data from 10 major world’s EGS projects and provides an overview of the basic elements needed to design HF. Authors were focused on two types of data: geological, i.e., stratigraphy, lithology, target zone deposition depth and temperature; geophysical, i.e., the tectonic regime at the site, magnitudes of the principal stresses, elastic parameters of rocks and the seismic velocities. For each of the EGS areas, the scope of work related to HF processes was briefly presented. The most important HF parameters are cited, i.e., fracturing pressure, pumping rate and used fracking fluids and proppants. In a few cases, the dimensions of the modeled or created hydraulic fractures are also provided. Additionally, the current state of the conceptual work of EGS projects in Poland is also briefly presented.


Sign in / Sign up

Export Citation Format

Share Document