scholarly journals Integrated mapping of water-related disasters using the analytical hierarchy process under land use change and climate change issues in Laos

2021 ◽  
Vol 21 (5) ◽  
pp. 1551-1567
Author(s):  
Sengphrachanh Phakonkham ◽  
So Kazama ◽  
Daisuke Komori

Abstract. In the past few decades, various natural hazards have occurred in Laos. To lower the consequences and losses caused by hazardous events, it is important to understand the magnitude of each hazard and the potential impact area. The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The integrated hazard maps were based on a merging of five hazard maps: floods, land use changes, landslides, climate change impacts on floods, and climate change impacts on landslides. The integrated hazard map consists of six maps under three representative concentration pathway (RCP) scenarios and two time periods (near future and far future). The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. From the results, comparing the increase in the very high hazard area between the integrated hazard maps of the far future under the RCP2.6 and RCP4.5 scenarios, Khammouan Province has the highest increase (16.45 %). Additionally, the very high hazard area in Khammouan Province increased by approximately 12.47 % between the integrated hazard maps under the RCP4.5 and RCP8.5 scenarios of the far future. The integrated hazard maps can pinpoint the dangerous area through the whole country, and the map can be used as primary data for selected future development areas. There are some limitations of the AHP methodology, which supposes linear independence of alternatives and criteria.

2020 ◽  
Author(s):  
Sengphrachanh Phrakonkham ◽  
So Kazama ◽  
Komori Daisuke

Abstract. In the past few decades, various natural hazards have occurred in Laos. To lower the consequences and losses caused by hazardous events, it is important to understand the magnitude of each hazard and the potential impact area. The main objective of this study was to propose a new approach to integrating hazard maps to detect hazardous areas on a national scale, for which area-limited data are available. The integrated hazard maps were based on a merging of five hazard maps: floods, land use changes, landslides, climate change impacts on floods and climate change impacts on landslides. The integrated hazard map consists of 6 maps under 3 representative concentration pathway (RCP) scenarios and 2 time periods (near future and far future). The analytical hierarchy process (AHP) was used as a tool to combine the different hazard maps into an integrated hazard map. From the results, comparing the increase in the very high-hazard area between the integrated hazard maps of the far future under the RCP2.6 and RCP4.5 scenarios, Khammouan Province has the highest increase (16.45 %). Additionally, the very high-hazard area in Khammouan Province increased by approximately 12.47 % between the integrated hazard maps under the RCP4.5 and 8.5 scenarios of the far future.


2021 ◽  
Author(s):  
Digvijay Singh ◽  
Arnab Laha

<p>Landslides problems are one of the major natural hazards in the mountainous region. Every year due to the increase in anthropogenic factors and changing climate, the problem of landslides is increasing, which leads to huge loss of property and life. Landslide is a common and regular phenomenon in most of the northeastern states of India.  However, in recent past years, Manipur has experienced several landslides including mudslides during the rainy season. Manipur is a geologically young and geodynamically active area with many streams flowing parallel to fault lines. As a first step toward hazard management, a landslide susceptibility map is the prime necessity of the region. In this study, we have prepared a landslide hazard map of the state using freely available earth observations datasets and multi-criteria decision making technique, i.e., Analytic Hierarchy Process (AHP). For this purpose, lithology, rainfall, slope, aspect, relative relief, Topographic Wetness Index, and distance from road, river and fault were used as the parameters in AHP based on the understanding of their influence towards landslide in that region. The hazard map is classified into four hazard zones: Very High, High, Moderate, and Low. About 40% of the state falls under very high and high hazard zone, and the hilly regions such as Senapati and Chandel district are more susceptible to the landslide. Among the factors, slope and rainfall have a more significant contribution towards landslide hazard. It is also observed that areas nearer to NH-39 that lies in the fault zones i.e., Mao is also susceptible to high hazard. The landslide susceptibility map gives an first-hand impression for future land use planning and hazard mitigation purpose.</p>


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2019 ◽  
Vol 11 (4) ◽  
pp. 1521-1538
Author(s):  
Muhammad Zia ur Rahman Hashmi ◽  
Amjad Masood ◽  
Haris Mushtaq ◽  
Syed Ahsan Ali Bukhari ◽  
Burhan Ahmad ◽  
...  

Abstract In transboundary river basins, climate change is being considered as a concern of higher degree than it is in other parts of the world. The Kabul River Basin, a sub-basin of the Indus River system shared by Pakistan and Afghanistan, is no exception. High level of sensitivity of its flow to temperature makes it imperative to analyse climate change impacts on the flow regime of this important river for efficient water resources management on both sides of the border. The snowmelt runoff model integrated with remote sensing snow cover product MODIS was selected to simulate daily discharges. Future projections were generated for two selected time slices, 2011–2030 (near future) and 2031–2050 (far future), based on output of an ensemble of four GCMs' RCP 4.5 and RCP 8.5 scenarios. Analysis shows a significant temperature increase under both scenarios in the near and far future at a high-altitude region of the basin which mostly receives snowfall that is also found increasing over time. Consequently, it causes a change in the flow regime and more frequent and heavier flooding events, thus calling for a joint strategy of the two riparian countries to mitigate the anticipated impacts in the basin for safety of people and overall prosperity.


2021 ◽  
Vol 12 (2) ◽  
pp. 01-26
Author(s):  
Derya Ozturk ◽  
◽  
Ilknur Yilmaz ◽  
Ufuk Kirbas ◽  
◽  
...  

In this study, the flood hazard of Corum province (Turkey) was investigated using the Analytic Hierarchy Process (AHP), which is one of the most popular Multi-criteria Decision Analysis (MCDA) methods, based on Geographic Information System (GIS). As a result of the AHP process, Corum province was categorized into five flood hazard classes: very high, high, medium, low, and very low. It was determined that 3% of the total area is under a very high flood hazard, and 25% is considered a high flood hazard. To assess the validity of the flood hazard map, the results were compared with the historical flood inventory. Our hazard map was compatible with the historical flood inventory, and our hazard map can now be used to estimate the areas that are threatened by possible floods. When the existing structural measures are overlapped with the hazard map in Corum, it is understood that a large part of the structural measures carried out to date have focused on the areas of very high and high flood hazard in the flood hazard map. Future structural measures and detailed studies should now address other areas identified as under threat in the flood hazard map. Our results suggest that the hazard assessment based on MCDA is suitable for flood hazard mapping.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Luke J. Harrington ◽  
Carl-Friedrich Schleussner ◽  
Friederike E. L. Otto

AbstractHigh-level assessments of climate change impacts aggregate multiple perils into a common framework. This requires incorporating multiple dimensions of uncertainty. Here we propose a methodology to transparently assess these uncertainties within the ‘Reasons for Concern’ framework, using extreme heat as a case study. We quantitatively discriminate multiple dimensions of uncertainty, including future vulnerability and exposure to changing climate hazards. High risks from extreme heat materialise after 1.5–2 °C and very high risks between 2–3.5 °C of warming. Risks emerge earlier if global assessments were based on national risk thresholds, underscoring the need for stringent mitigation to limit future extreme heat risks.


2020 ◽  
Vol 648 ◽  
pp. 1-17
Author(s):  
A Bryndum-Buchholz ◽  
DG Boyce ◽  
DP Tittensor ◽  
V Christensen ◽  
D Bianchi ◽  
...  

Climate-induced changes in the world’s oceans will have implications for fisheries productivity and management. Using a model ensemble from the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish-MIP), we analyzed future trajectories of climate-change impacts on marine animal biomass and associated environmental drivers across the North Atlantic Ocean and within the Northwest Atlantic Fisheries Organization (NAFO) convention area and evaluated potential consequences for fisheries productivity and management. Our ensemble results showed that the magnitude of projected biomass changes increased over time and from a low (RCP2.6) to high (RCP8.5) emissions scenario. Within individual NAFO divisions, however, projected biomass changes differed in the magnitude and sometimes direction of change between near (the 2030s) and far future (the 2090s) and contrasting emissions scenarios. By the 2090s, most NAFO divisions with historically (1990-1999) high fisheries landings were projected to experience biomass decreases of 5-40%, while Arctic and subarctic divisions with lower historical landings were projected to experience biomass increases between 20 and 70% under RCP8.5. Future trajectories of sea surface temperature and primary production corroborated that the far-future, high-emissions scenario poses the greatest risk to marine ecosystems and the greatest challenges to fisheries management. Our study summarizes future trends of marine animal biomass and underlying uncertainties related to model projections under contrasting climate-change scenarios. Understanding such climate-change impacts on marine ecosystems is imperative for ensuring that marine fisheries remain productive and sustainable in a changing ocean.


2021 ◽  
Vol 167 (3-4) ◽  
Author(s):  
Siatwiinda M. Siatwiinda ◽  
Iwan Supit ◽  
Bert van Hove ◽  
Olusegun Yerokun ◽  
Gerard H. Ros ◽  
...  

AbstractMaize production in Zambia is characterized by significant yield gaps attributed to nutrient management and climate change threatens to widen these gaps unless agronomic management is optimized. Insights in the impacts of climate change on maize yields and the potential to mitigate negative impacts by crop management are currently lacking for Zambia. Using five Global Circulation models and the WOFOST crop model, we assessed climate change impacts on maize yields at a 0.5° × 0.5° spatial resolution for RCP 4.5 and RCP 8.5 scenarios. Impacts were assessed for the near future (2035-2066) and far future (2065-2096) in comparison with a reference period (1971-2001). The surface temperature and warm days (above 30 °C) are projected to increase strongly in the southern and western regions. Precipitation is expected to decline, except in the northern regions, whereas the number of wet days declines everywhere, shortening the growing season. The risk of crop failure in western and southern regions increases due to dry spells and heat stress, while crops in the northern regions will be threatened by flooding or waterlogging due to heavy precipitation. The simulated decline in the water-limited and water- and nutrient-limited maize yields varied from 15 to 20% in the near future and from 20 to 40% in the far future, mainly due to the expected temperature increases. Optimizing management by adjusting planting dates and maize variety selection can counteract these impacts by 6-29%. The existing gaps between water-limited and nutrient-limited maize yields are substantially larger than the expected yield decline due to climate change. Improved nutrient management is therefore crucial to boost maize production in Zambia.


Sign in / Sign up

Export Citation Format

Share Document