scholarly journals Exploring climate change impacts during first half of the 21st century on flow regime of the transboundary Kabul River in the Hindukush region

2019 ◽  
Vol 11 (4) ◽  
pp. 1521-1538
Author(s):  
Muhammad Zia ur Rahman Hashmi ◽  
Amjad Masood ◽  
Haris Mushtaq ◽  
Syed Ahsan Ali Bukhari ◽  
Burhan Ahmad ◽  
...  

Abstract In transboundary river basins, climate change is being considered as a concern of higher degree than it is in other parts of the world. The Kabul River Basin, a sub-basin of the Indus River system shared by Pakistan and Afghanistan, is no exception. High level of sensitivity of its flow to temperature makes it imperative to analyse climate change impacts on the flow regime of this important river for efficient water resources management on both sides of the border. The snowmelt runoff model integrated with remote sensing snow cover product MODIS was selected to simulate daily discharges. Future projections were generated for two selected time slices, 2011–2030 (near future) and 2031–2050 (far future), based on output of an ensemble of four GCMs' RCP 4.5 and RCP 8.5 scenarios. Analysis shows a significant temperature increase under both scenarios in the near and far future at a high-altitude region of the basin which mostly receives snowfall that is also found increasing over time. Consequently, it causes a change in the flow regime and more frequent and heavier flooding events, thus calling for a joint strategy of the two riparian countries to mitigate the anticipated impacts in the basin for safety of people and overall prosperity.

Water ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 665
Author(s):  
Chanchai Petpongpan ◽  
Chaiwat Ekkawatpanit ◽  
Supattra Visessri ◽  
Duangrudee Kositgittiwong

Due to a continuous increase in global temperature, the climate has been changing without sign of alleviation. An increase in the air temperature has caused changes in the hydrologic cycle, which have been followed by several emergencies of natural extreme events around the world. Thailand is one of the countries that has incurred a huge loss in assets and lives from the extreme flood and drought events, especially in the northern part. Therefore, the purpose of this study was to assess the hydrological regime in the Yom and Nan River basins, affected by climate change as well as the possibility of extreme floods and droughts. The hydrological processes of the study areas were generated via the physically-based hydrological model, namely the Soil and Water Assessment Tool (SWAT) model. The projected climate conditions were dependent on the outputs of the Global Climate Models (GCMs) as the Representative Concentration Pathways (RCPs) 2.6 and 8.5 between 2021 and 2095. Results show that the average air temperature, annual rainfall, and annual runoff will be significantly increased in the intermediate future (2046–2070) onwards, especially under RCP 8.5. According to the Flow Duration Curve and return period of peak discharge, there are fluctuating trends in the occurrence of extreme floods and drought events under RCP 2.6 from the future (2021–2045) to the far future (2071–2095). However, under RCP 8.5, the extreme flood and drought events seem to be more severe. The probability of extreme flood remains constant from the reference period to the near future, then rises dramatically in the intermediate and the far future. The intensity of extreme droughts will be increased in the near future and decreased in the intermediate future due to high annual rainfall, then tending to have an upward trend in the far future.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


Author(s):  
Yar M. Taraky ◽  
Yongbo Liu ◽  
Bahram Gharabaghi ◽  
Edward McBean ◽  
Prasad Daggupati ◽  
...  

While climate change impacts vary globally, for the Kabul River Basin (KRB), concerns are primarily associated with frequent flooding. This research describes the influence of headwater reservoirs on projections of climate change impacts and flood frequency, and how the riparian countries can benefit from storing of floodwaters for use during dry seasons. Six climate change scenarios and two Representative Concentration Pathways (RCPs) are used in three periods of a quarter-century each. The Soil and Water Assessment Tool (SWAT) is used to assess how the proposed reservoirs will reduce flooding by ~38% during the wet season, reduce the flood frequency from five to 25 years return period, and increase low flows by ~110% during the dry season, which reflect an ~17.5% reduction in the glacier-covered area by the end of the century. The risks and benefits of reservoirs are highlighted in light of the developmental goals of Afghanistan and Pakistan.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2435
Author(s):  
Pengfei Shi ◽  
Jiahong Liu ◽  
Tao Yang ◽  
Chong-Yu Xu ◽  
Jie Feng ◽  
...  

Climate change and anthropogenic activities do collectively lead to an alteration of the flow regime, posing a great influence upon the structure and persistence of native biotic communities within river ecosystems. The range of variability approach (RVA) method is commonly used to evaluate the flow regime alteration. However, it was reported to underestimate the degree of flow regime potentially. In this study, two new assessment methods/metrics for evaluating the process behaviors of the flow regime are developed based on Euclidean distance and dynamic time warping (DTW) distance. They are then integrated with the metric of RVA, generating two composite metrics that represent both frequency and process changes of the flow regime. The new methods/metrics were applied to identify the flow regime alteration in a typical basin in the middle reaches of the Yellow River, China. The results show that the composite metrics consistently reveal a high alteration degree of flow regime in the basin. The decreased biological integrity of fish demonstrates the reasonability of the high-level overall alteration to some degree. The updated methods enable more scientific evaluation for the complex hydrologic alteration under a changing environment.


Author(s):  
Feraldo D. Joffre ◽  
Berkley N. King Jr.

This study assessed the knowledge, concern and support of policy relative to climate change impacts of Grand Bahamians. Specifically the study assessed the awareness and concern of Grand Bahamians; examine the difference in participants’ awareness and concern of climate change impacts; analyze the factors that influence the awareness and concern of climate change impacts of participants; and assess the predictive ability of the Value Belief Norm Theory in relation to the participants’ intent to support policy for climate change issues. A survey questionnaire and focus group discussion were used for ata collection Findings showed that Grand Bahamians have a low level of scientific knowledge, a high level of concern regarding climate change and a strong intent to support policy for climate adaptation. Despite this low level of scientific knowledge, they have a developed experiential knowledge due to their frequent exposure to extreme climate events they perceive to be associated with climate change. The high level of concern influenced their desire to support policies aimed at adapting to the adverse impacts of climate change.


Author(s):  
Taylor Livingston ◽  
Edward McBean ◽  
Mason Marchildon ◽  
Bahram Gharabaghi

Water management activities are currently predicated on the assumption of a stationary climate, despite the reality of climate change. Hydrologic impacts of climate change for three sub-watersheds north of Toronto for 2041-70 were investigated using the Precipitation-Runoff Modeling System to model six GCM projections from each of RCP 2.6, RCP 4.5, and RCP 8.5. Annual groundwater recharge, evapotranspiration, and the 7Q20 low streamflow statistic were projected to change from 1976-2005 conditions by -2.2% to +20.5%, +0.9% to +14.4%, and -25.5% to +9.8%, respectively. Seasonal shifts included an earlier date of peak streamflow for the majority of simulations and a +14.0% to +103.9% increase in winter recharge. A steady-state MODFLOW model was employed as a preliminary assessment into the effects of climate change on Source Water Protection outputs. The results of this research further the understanding of climate change impacts on human and ecological systems in southern Ontario.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1599 ◽  
Author(s):  
Benjamin Poschlod ◽  
Florian Willkofer ◽  
Ralf Ludwig

This study assesses the change of the seasonal runoff characteristics in 98 catchments in central Europe between the reference period of 1981–2010, and in the near future (2011–2040), mid future (2041–2070) and far future (2071–2099). Therefore, a large ensemble of 50 hydrological simulations featuring the model WaSiM-ETH driven by a 50-member ensemble of the Canadian Regional Climate Model, version 5 (CRCM5) under the emission scenario Representative Concentration Pathway (RCP 8.5) is analyzed. A hierarchical cluster analysis is applied to group the runoff characteristics into six flow regime classes. In the study area, (glacio-)nival, nival (transition), nivo-pluvial and three different pluvial classes are identified. We find that the characteristics of all six regime groups are severely affected by climate change in terms of the amplitude and timing of the monthly peaks and sinks. According to our simulations, the monthly peak of nival regimes will occur earlier in the season and the relative importance of rainfall increases towards the future. Pluvial regimes will become less balanced with higher normalized monthly discharge during January to March and a strong decrease during May to October. In comparison to the reference period, 8% of catchments will shift to another regime class until 2011–2040, whereas until 2041–2070 and 2071–2099, 23% and 43% will shift to another class, respectively.


Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1335
Author(s):  
Paola Faggian

To support the development of national adaptation policies and measures addressing climate change impacts over Italy, this work aims to analyze projected changes in mean temperatures and precipitations, and extreme events such as droughts and floods, highlighting some local trends in the different Italian regions that have been little considered to date. The investigations are made on the basis of a set of high-resolution Euro-CORDEX models (horizontal resolution 0.11°, about 12 km) to infer quantitative assessments about the danger of climate changes under three different Representative Concentration Pathways (RCPs): business as usual scenario, i.e., without a reduction in green-house gas emissions (RCP 8.5), medium stabilization scenario (RCP 4.5) and mitigation scenario (RCP 2.6). After filtering the models with limited performances in reconstructing the current climate, the multi-model climate change scenarios were characterized by comparing the ensemble mean values computed for the base-line period (1971–2000) with those elaborated for the short- (2021–2050), medium- (2041–2070) and long-term (2071–2100). Two WMO ETCCDI indices were considered to investigate climate extremes: Consecutive Dry Days and extreme precipitations. Despite some uncertainties (related to discrepancies among the models), drought conditions and extreme precipitations will likely exacerbate in the coming decades without mitigation (RCP 8.5). Such conditions will be less critical if partial mitigation actions will be undertaken (RCP 4.5) and are expected to be significantly reduced with decarbonization policies (RCP 2.6).


2021 ◽  
Author(s):  
Toju Esther Babalola ◽  
Philip Gbenro Oguntunde ◽  
Ayodele Ebenezer Ajayi ◽  
Francis Omowonuola Akinluyi

The changing climate is a concern to sustainable water resources. This study examined climate change impacts on river discharge seasonality in two West African river basins; the Niger river basin and the Hadejia-Jama’are Komadugu-Yobe Basin (HJKYB). The basins have their gauges located within Nigeria and cover the major climatic settings. Here, we set up and validated the hyper resolution global hydrological model PCR-GLOBWB for these rivers. Time series plots as well five performance evaluation metrics such as Kling–Gupta efficiency (KGE),); the ratio of RMSE-observations standard deviation (RSR); per cent bias (PBIAS); the Nash–Sutcliffe Efficiency criteria (NSE); and, the coefficient of determination (r2), were employed to verify the PCR-GLOBWB simulation capability. The validation results showed from satisfactory to very good on individual rivers as specified by PBIAS (−25 to 0.8), NSE (from 0.6 to 0.8), RSR (from 0.62 to 0.4), r2 (from 0.62 to 0.88), and KGE (from 0.69 to 0.88) respectively. The impact assessment was performed by driving the model with climate projections from five global climate models for the representative concentration pathways (RCPs) 4.5 and 8.5. We examined the median and range of expected changes in seasonal discharge in the far future (2070–2099). Our results show that the impacts of climate change cause a reduction in discharge volume at the beginning of the high flow period and an increase in discharge towards the ending of the high flow period relative to the historical period across the selected rivers. In the Niger river basin, at the Lokoja gauge, projected decreases added up to 512 m3/s under RCP 4.5 (June to July) and 3652 m3/s under RCP 8.5 (June to August). The three chosen gauges at the HJKYB also showed similar impacts. At the Gashua gauge, discharge volume increased by 371 m3/s (RCP8.5) and 191 m3/s (RCP4.5) from August to November. At the Bunga gauge, a reduction/increase of -91 m3/s/+84 m3/s (RCP 8.5) and -40 m3/s/+31 m3/s/(RCP 4.5) from June to July/August to October was simulated. While at the Wudil gauge, a reduction/increase in discharge volumes of −39/+133 m3/s (RCP8.5) and −40/133 m3/s (RCP 4.5) from June to August/September to December is projected. This decrease is explained by a delayed start of the rainy season. In all four rivers, projected river discharge seasonality is amplified under the high-end emission scenario (RCP8.5). This finding supports the potential advantages of reduced greenhouse gas emissions for the seasonal river discharge regime. Our study is anticipated to provide useful information to policymakers and river basin development authorities, leading to improved water management schemes within the context of changing climate and increasing need for agricultural expansion.


Sign in / Sign up

Export Citation Format

Share Document