scholarly journals A neural network model for short term river flow prediction

2006 ◽  
Vol 6 (4) ◽  
pp. 629-635 ◽  
Author(s):  
R. Teschl ◽  
W. L. Randeu

Abstract. This paper presents a model using rain gauge and weather radar data to predict the runoff of a small alpine catchment in Austria. The gapless spatial coverage of the radar is important to detect small convective shower cells, but managing such a huge amount of data is a demanding task for an artificial neural network. The method described here uses statistical analysis to reduce the amount of data and find an appropriate input vector. Based on this analysis, radar measurements (pixels) representing areas requiring approximately the same time to dewater are grouped.

2020 ◽  
Vol 32 (6) ◽  
pp. 747-760
Author(s):  
Changxi Ma ◽  
Limin Tan ◽  
Xuecai Xu

In order to improve the accuracy of short-term traffic flow prediction, a combined model composed of artificial neural network optimized by using Genetic Algorithm (GA) and Exponential Smoothing (ES) has been proposed. By using the metaheuristic optimal search ability of GA, the connection weight and threshold of the feedforward neural network trained by a backpropagation algorithm are optimized to avoid the feedforward neural network falling into local optimum, and the prediction model of Genetic Artificial Neural Network (GANN) is established. An ES prediction model is presented then. In order to take the advantages of the two models, the combined model is composed of a weighted average, while the weight of the combined model is determined according to the prediction mean square error of the single model. The road traffic flow data of Xuancheng, Anhui Province with an observation interval of 5 min are used for experimental verification. Additionally, the feedforward neural network model, GANN model, ES model and combined model are compared and analysed, respectively. The results show that the prediction accuracy of the optimized feedforward neural network is much higher than that before the optimization. The prediction accuracy of the combined model is higher than that of the two single models, which verifies the feasibility and effectiveness of the combined model.


2010 ◽  
Vol 4 (2) ◽  
pp. 159-162
Author(s):  
Leslaw Plonka ◽  
◽  
Korneliusz Miksch ◽  

This paper presents an approach to predict the amount of the wastewater which enters wastewater treatment plant, using artificial neural network. The method presented can be used to give short-term predictions of wastewater inflow-rate. The described neural network model uses a very tiny set of data commonly collected by WWTP control systems.


2020 ◽  
Vol 34 (6) ◽  
pp. 745-751
Author(s):  
Arvind Yadav ◽  
Boggavarapu Bhanu Venkata Satya Vara Prasad ◽  
Ramesh Kumar Mojjada ◽  
Kiran Kumar Kothamasu ◽  
Devendra Joshi

2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


2014 ◽  
Vol 22 (3) ◽  
pp. 576-585 ◽  
Author(s):  
Hossein Tabari ◽  
P. Hosseinzadeh Talaee ◽  
Patrick Willems

Sign in / Sign up

Export Citation Format

Share Document