scholarly journals Support to Aviation Control Service (SACS): an online service for near real-time satellite monitoring of volcanic plumes

2013 ◽  
Vol 1 (5) ◽  
pp. 5935-6000 ◽  
Author(s):  
H. Brenot ◽  
N. Theys ◽  
L. Clarisse ◽  
J. van Geffen ◽  
J. van Gent ◽  
...  

Abstract. Volcanic eruptions emit plumes of ash and gases in the atmosphere, potentially at very high altitudes. Ash rich plumes are hazardous for airplanes as ash is very abrasive and easily melts inside their engines. With more than 50 active volcanoes per year and the ever increasing number of commercial flights, the safety of airplanes is a real concern. Satellite measurements are ideal for monitoring global volcanic activity and, in combination with atmospheric dispersion models, to track and forecast volcanic plumes. Here we present the Support to Aviation Control Service (SACS, http://sacs.aeronomie.be), which is a free online service initiated by ESA for the near real-time (NRT) satellite monitoring of volcanic plumes of SO2 and ash. It combines data from two UV-visible (OMI, GOME-2) and two infrared (AIRS, IASI) spectrometers. This new multi-sensor warning system of volcanic plumes, running since April 2012, is based on the detection of SO2 and is optimised to avoid false alerts while at the same time limiting the number of notifications in case of large plumes. The system shows successful results with 95% of our notifications corresponding to true volcanic activity.

2014 ◽  
Vol 14 (5) ◽  
pp. 1099-1123 ◽  
Author(s):  
H. Brenot ◽  
N. Theys ◽  
L. Clarisse ◽  
J. van Geffen ◽  
J. van Gent ◽  
...  

Abstract. Volcanic eruptions emit plumes of ash and gases into the atmosphere, potentially at very high altitudes. Ash-rich plumes are hazardous for airplanes as ash is very abrasive and easily melts inside their engines. With more than 50 active volcanoes per year and the ever-increasing number of commercial flights, the safety of airplanes is a real concern. Satellite measurements are ideal for monitoring global volcanic activity and, in combination with atmospheric dispersion models, to track and forecast volcanic plumes. Here we present the Support to Aviation Control Service (SACS, http://sacs.aeronomie.be), which is a free online service initiated by the European Space Agency (ESA) for the near-real-time (NRT) satellite monitoring of volcanic plumes of SO2 and ash. It combines data from three ultraviolet (UV)-visible and three infrared (IR) spectrometers. The UV-vis sensors are the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) on-board the two polar orbiting meteorological satellites (MetOp-A & MetOp-B) operated by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT). The IR sensors are the Atmospheric InfraRed Sounder (AIRS) and the Infrared Atmospheric Sounding Interferometer (IASI) on-board MetOp-A & MetOp-B. This new multi-sensor warning system of volcanic emissions is based on the selective detection of SO2 and ash. This system is optimised to avoid false alerts while at the same time limiting the number of notifications in case of large plumes. A successful rate with more than 95% of notifications corresponding to true volcanic activity is obtained by the SACS system.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


2020 ◽  
pp. 20-26
Author(s):  
Yu. Balashevska ◽  
Yu. Kyrylenko ◽  
O. Pecherytsia ◽  
I. Shevchenko ◽  
V. Bogorad

Determination of urgent countermeasures to protect the public in early phase of the accident at NPP requires providing of radiological impact assessment at different distances in real time. These activities involve current meteorological forecast data and information about source term parameters as one of the main part of the emergency сenters functioning worldwide for prompt notification about the radiological or nuclear event in the country, as well as abroad in the case of transboundary impact. Experts’ background in the assessment and forecasting of radiological consequences area may vary from country to country in terms of methodological approaches, the use of atmospheric dispersion models, doses assessment models, databases, organization procedures, calculation process etc. Possible deviations in the results of assessments performed by experts from different countries may be caused by a number of factors. Their reasons can vary from the use of different information sources to the specifics of protective actions criteria in accordance with national requirements. These factors should be identified both in practice and scientifically. Radiological consequence assessment activities are harmonized at the international level. It is the target of a wide range of international projects. The paper provides information on modern scientific initiatives aimed at improving assessments and forecasts of radiological consequences to determine urgent countermeasures to protect the public at early phases of an accident at nuclear power plant, in particular, approaches to the initial data preparation and the conduct of assessments and forecasting. A review of international benchmarking activities as well as past emergency exercise overview is presented in the paper. Relevant problems of forecasting radiological consequences in real time are highlighted.


2020 ◽  
Vol 92 (1) ◽  
pp. 77-84 ◽  
Author(s):  
Jean-Marie Saurel ◽  
Jordane Corbeau ◽  
Sébastien Deroussi ◽  
Tristan Didier ◽  
Arnaud Lemarchand ◽  
...  

Abstract Between 2008 and 2014, the Institut de Physique du Globe de Paris (IPGP) and the University of the West Indies, Seismic Research Centre (UWI-SRC) designed and built a regional seismic network across the Lesser Antilles. One of the goals of the network is to provide real-time seismic data to the tsunami warning centers in the framework of the Intergovernmental Coordination Group working toward the establishment of a tsunami and other coastal hazards early warning system (ICG-CARIBE-EWS) for the Caribbean and adjacent regions (McNamara et al., 2016). In an area prone to hurricanes, earthquakes, tsunamis, and volcanic eruptions, we chose different techniques and technologies to ensure that our cooperated network could survive and keep providing data in case of major natural hazards. The Nanometrics very small aperture terminal (VSAT) technology is at the heart of the system. It allows for duplicated data collection at the three observatories (Trinidad, Martinique, and Guadeloupe; Anglade et al., 2015). In 2017, the network design and implementation were put to the test with Saffir–Simpson category 5 hurricanes Irma and Maria that went, respectively, through the north and central portion of the Lesser Antilles, mainly impacting the sites operated by volcanological and seismological observatories of IPGP in Martinique (Observatoire Volcanologique et Sismologique de Martinique [OVSM]) and in Guadeloupe (Observatoire Volcanologique et Sismologique de Guadeloupe [OVSG]). Our concepts proved to be valid with a major data shortage of less than 12 hr and only two stations having sustained heavy damage. In this article, we review the strengths and weaknesses of the initial design and discuss various steps that can be taken to enhance the ability of our cooperated network to provide timely real-time seismic data to tsunami warning centers under any circumstances.


Author(s):  
Jun-hua Chen ◽  
Da-hu Wang ◽  
Cun-yuan Sun

Objective: This study focused on the application of wearable technology in the safety monitoring and early warning for subway construction workers. Methods: With the help of real-time video surveillance and RFID positioning which was applied in the construction has realized the real-time monitoring and early warning of on-site construction to a certain extent, but there are still some problems. Real-time video surveillance technology relies on monitoring equipment, while the location of the equipment is fixed, so it is difficult to meet the full coverage of the construction site. However, wearable technologies can solve this problem, they have outstanding performance in collecting workers’ information, especially physiological state data and positioning data. Meanwhile, wearable technology has no impact on work and is not subject to the inference of dynamic environment. Results and conclusion: The first time the system applied to subway construction was a great success. During the construction of the station, the number of occurrences of safety warnings was 43 times, but the number of occurrences of safety accidents was 0, which showed that the safety monitoring and early warning system played a significant role and worked out perfectly.


2021 ◽  
Vol 11 (16) ◽  
pp. 7197
Author(s):  
Yourui Tong ◽  
Bochen Jia ◽  
Shan Bao

Warning pedestrians of oncoming vehicles is critical to improving pedestrian safety. Due to the limitations of a pedestrian’s carrying capacity, it is crucial to find an effective solution to provide warnings to pedestrians in real-time. Limited numbers of studies focused on warning pedestrians of oncoming vehicles. Few studies focused on developing visual warning systems for pedestrians through wearable devices. In this study, various real-time projection algorithms were developed to provide accurate warning information in a timely way. A pilot study was completed to test the algorithm and the user interface design. The projection algorithms can update the warning information and correctly fit it into an easy-to-understand interface. By using this system, timely warning information can be sent to those pedestrians who have lower situational awareness or obstructed view to protect them from potential collisions. It can work well when the sightline is blocked by obstructions.


Sign in / Sign up

Export Citation Format

Share Document