scholarly journals Hysteresis-controlled instability waves in a scale-free driven current sheet model

2005 ◽  
Vol 12 (6) ◽  
pp. 827-833 ◽  
Author(s):  
V. M. Uritsky ◽  
A. J. Klimas

Abstract. Magnetospheric dynamics is a complex multiscale process whose statistical features can be successfully reproduced using high-dimensional numerical transport models exhibiting the phenomenon of self-organized criticality (SOC). Along this line of research, a 2-dimensional driven current sheet (DCS) model has recently been developed that incorporates an idealized current-driven instability with a resistive MHD plasma system (Klimas et al., 2004a, b). The dynamics of the DCS model is dominated by the scale-free diffusive energy transport characterized by a set of broadband power-law distribution functions similar to those governing the evolution of multiscale precipitation regions of energetic particles in the nighttime sector of aurora (Uritsky et al., 2002b). The scale-free DCS behavior is supported by localized current-driven instabilities that can communicate in an avalanche fashion over arbitrarily long distances thus producing current sheet waves (CSW). In this paper, we derive the analytical expression for CSW speed as a function of plasma parameters controlling local anomalous resistivity dynamics. The obtained relation indicates that the CSW propagation requires sufficiently high initial current densities, and predicts a deceleration of CSWs moving from inner plasma sheet regions toward its northern and southern boundaries. We also show that the shape of time-averaged current density profile in the DCS model is in agreement with steady-state spatial configuration of critical avalanching models as described by the singular diffusion theory of the SOC. Over shorter time scales, SOC dynamics is associated with rather complex spatial patterns and, in particular, can produce bifurcated current sheets often seen in multi-satellite observations.

2014 ◽  
Vol 651-653 ◽  
pp. 1741-1747
Author(s):  
Xiao Lin Zhao ◽  
Gang Hao ◽  
Chang Zhen Hu ◽  
Zhi Qiang Li

With the increasing scale of software system, the interaction between software elements becomes more and more complex, which lead to the increased dirty data in running software system. This may reduce the system performance and cause system collapse. In this paper, we proposed a discovery method of the dirty data transmission path based on complex network. Firstly, the binary file is decompiled and the function call graph is drawn by using the source code. Then the software structure is described as a weighted directed graph based on the knowledge of complex network. In addition, the dirty data node is marked by using the power-law distribution characteristics of the scale-free network construction of complex network chart. Finally, we found the dirty data transmission path during software running process. The experimental results show the transmission path of dirty data is accurate, which confirmed the feasibility of the method.


2018 ◽  
Vol 84 (3) ◽  
Author(s):  
F. Wilson ◽  
T. Neukirch ◽  
O. Allanson

So far, only one distribution function giving rise to a collisionless nonlinear force-free current sheet equilibrium allowing for a plasma beta less than one is known (Allansonet al.,Phys. Plasmas, vol. 22 (10), 2015, 102116; Allansonet al.,J. Plasma Phys., vol. 82 (3), 2016a, 905820306). This distribution function can only be expressed as an infinite series of Hermite functions with very slow convergence and this makes its practical use cumbersome. It is the purpose of this paper to present a general method that allows us to find distribution functions consisting of a finite number of terms (therefore easier to use in practice), but which still allow for current sheet equilibria that can, in principle, have an arbitrarily low plasma beta. The method involves using known solutions and transforming them into new solutions using transformations based on taking integer powers ($N$) of one component of the pressure tensor. The plasma beta of the current sheet corresponding to the transformed distribution functions can then, in principle, have values as low as$1/N$. We present the general form of the distribution functions for arbitrary$N$and then, as a specific example, discuss the case for$N=2$in detail.


2005 ◽  
Vol 77 (2) ◽  
pp. 345-358 ◽  
Author(s):  
U. Czarnetzki ◽  
D. Luggenhölscher ◽  
V. A. Kadetov ◽  
H. F. Döbele

Laser spectroscopic electric field measurements have the potential to become a versatile tool for the diagnostics of low-temperature plasmas. From the spatially and temporally resolved field distribution in the sheath close to electrodes or surfaces in general, a broad range of important plasma parameters can be inferred directly: electron temperature; ion density distribution; displacement-, ion-, electron-diffusion current density; and the sheath potential. Indirectly, the electron and ion energy distribution functions and information on the ion dynamics in the sheath can also be obtained. Finally, measurements in the quasi-neutral bulk can also reveal even the plasma density distribution with high spatial and temporal resolution. The basic concepts for analysis of the field data are introduced and demonstrated by examples in hydrogen discharges.


2013 ◽  
Vol 753-755 ◽  
pp. 2959-2962
Author(s):  
Jun Tao Yang ◽  
Hui Wen Deng

Assigning the value of interest to each node in the network, we give a scale-free network model. The value of interest is related to the fitness and the degree of the node. Experimental results show that the interest model not only has the characteristics of the BA scale-free model but also has the characteristics of fitness model, and the network has a power-law distribution property.


Antibodies ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 13
Author(s):  
József Prechl

Adaptive immunity in vertebrates is a complex self-organizing network of molecular interactions. While deep sequencing of the immune-receptor repertoire may reveal clonal relationships, functional interpretation of such data is hampered by the inherent limitations of converting sequence to structure to function. In this paper, a novel model of antibody interaction space and network, termed radial adjustment of system resolution, RAdial ADjustment of System Resolution (RADARS), is proposed. The model is based on the radial growth of interaction affinity of antibodies towards an infinity of directions in structure space, each direction corresponding to particular shapes of antigen epitopes. Levels of interaction affinity appear as free energy shells of the system, where hierarchical B-cell development and differentiation takes place. Equilibrium in this immunological thermodynamic system can be described by a power law distribution of antibody-free energies with an ideal network degree exponent of phi square, representing a scale-free fractal network of antibody interactions. Plasma cells are network hubs, memory B cells are nodes with intermediate degrees, and B1 cells function as nodes with minimal degree. Overall, the RADARS model implies that a finite number of antibody structures can interact with an infinite number of antigens by immunologically controlled adjustment of interaction energy distribution. Understanding quantitative network properties of the system should help the organization of sequence-derived predicted structural data.


2012 ◽  
Vol 229-231 ◽  
pp. 1854-1857
Author(s):  
Xin Yi Chen

Systems as diverse as genetic networks or the World Wide Web are best described as networks with complex topology. A common property of many large networks is that the vertex connectivities follow a power-law distribution. This feature was found to be a consequence of three generic mechanisms: (i) networks expand continuously by the addition of new vertices, (ii) new vertex with priority selected different edges of weighted selected that connected to different vertices in the system, and (iii) by the fitness probability that a new vertices attach preferentially to sites that are already well connected. A model based on these ingredients reproduces the observed stationary scale-free distributions, which indicates that the development of large networks is governed by robust self-organizing phenomena. Experiment results show that the model is more close to the actual Internet network.


1989 ◽  
Vol 7 (1) ◽  
pp. 3-14
Author(s):  
W. Mróz ◽  
R. Arendzikowski ◽  
S. Denus ◽  
J. Farny ◽  
H. Fiedorowicz ◽  
...  

The paper presents results of an investigation of energy transport in 6-μm aluminum foils covered with a silver or gold layer irradiated with 1·06-μm, 1-ns laser-pulse at intensities 1013to 1014 W/cm2. The increase in mass ablation rate and volume heating of accelerated fragment of the foil as well as the increased range of lateral energy transport were registered. The measured plasma parameters from aluminum foils were used for testing the one-dimesional numerical code.


2007 ◽  
Vol 17 (07) ◽  
pp. 2419-2434 ◽  
Author(s):  
FRANCESCO SORRENTINO ◽  
MARIO DI BERNARDO ◽  
FRANCO GAROFALO

We study the synchronizability and the synchronization dynamics of networks of nonlinear oscillators. We investigate how the synchronization of the network is influenced by some of its topological features such as variations of the power law degree distribution exponent γ and the degree correlation coefficient r. Using an appropriate construction algorithm based on clustering the network vertices in p classes according to their degrees, we construct networks with an assigned power law distribution but changing degree correlation properties. We find that the network synchronizability improves when the network becomes disassortative, i.e. when nodes with low degree are more likely to be connected to nodes with higher degree. We consider the case of both weighed and unweighed networks. The analytical results reported in the paper are then confirmed by a set of numerical observations obtained on weighed and unweighed networks of nonlinear Rössler oscillators. Using a nonlinear optimization strategy we also show that negative degree correlation is an emerging property of networks when synchronizability is to be optimized. This suggests that negative degree correlation observed experimentally in a number of physical and biological networks might be motivated by their need to synchronize better.


Sign in / Sign up

Export Citation Format

Share Document