scholarly journals A study of the phase instability of quasi-geostrophic Rossby waves on the infinite β-plane to zonal flow perturbations

2010 ◽  
Vol 17 (1) ◽  
pp. 49-63 ◽  
Author(s):  
L. Marié

Abstract. The problem of the linear instability of quasi-geostrophic Rossby waves to zonal flow perturbations is investigated on an infinite β-plane using a phase dynamics formalism. Equations governing the coupled evolutions of a zonal velocity perturbation and phase and amplitude perturbations of a finite-amplitude wave are obtained. The analysis is valid in the limit of infinitesimal, zonally invariant perturbation components, varying slowly in the meridional direction and with respect to time. In the case of a slow sinusoidal meridional variation of the perturbation components, analytical expressions for the perturbation growth rates are obtained, which are checked against numerical codes based on standard Floquet theory.

2008 ◽  
Vol 602 ◽  
pp. 303-326 ◽  
Author(s):  
E. PLAUT ◽  
Y. LEBRANCHU ◽  
R. SIMITEV ◽  
F. H. BUSSE

A general reformulation of the Reynolds stresses created by two-dimensional waves breaking a translational or a rotational invariance is described. This reformulation emphasizes the importance of a geometrical factor: the slope of the separatrices of the wave flow. Its physical relevance is illustrated by two model systems: waves destabilizing open shear flows; and thermal Rossby waves in spherical shell convection with rotation. In the case of shear-flow waves, a new expression of the Reynolds–Orr amplification mechanism is obtained, and a good understanding of the form of the mean pressure and velocity fields created by weakly nonlinear waves is gained. In the case of thermal Rossby waves, results of a three-dimensional code using no-slip boundary conditions are presented in the nonlinear regime, and compared with those of a two-dimensional quasi-geostrophic model. A semi-quantitative agreement is obtained on the flow amplitudes, but discrepancies are observed concerning the nonlinear frequency shifts. With the quasi-geostrophic model we also revisit a geometrical formula proposed by Zhang to interpret the form of the zonal flow created by the waves, and explore the very low Ekman-number regime. A change in the nature of the wave bifurcation, from supercritical to subcritical, is found.


1985 ◽  
Vol 160 ◽  
pp. 281-295 ◽  
Author(s):  
F. A. Milinazzo ◽  
P. G. Saffman

Computations of two-dimensional solutions of the Navier–Stokes equations are carried out for finite-amplitude waves on steady unidirectional flow. Several cases are considered. The numerical method employs pseudospectral techniques in the streamwise direction and finite differences on a stretched grid in the transverse direction, with matching to asymptotic solutions when unbounded. Earlier results for Poiseuille flow in a channel are re-obtained, except that attention is drawn to the dependence of the minimum Reynolds number on the physical constraint of constant flux or constant pressure gradient. Attempts to calculate waves in Couette flow by continuation in the velocity of a channel wall fail. The asymptotic suction boundary layer is shown to possess finite-amplitude waves at Reynolds numbers orders of magnitude less than the critical Reynolds number for linear instability. Waves in the Blasius boundary layer and unsteady Rayleigh profile are calculated by employing the artifice of adding a body force to cancel the spatial or temporal growth. The results are verified by comparison with perturbation analysis in the vicinity of the linear-instability critical Reynolds numbers.


1989 ◽  
Vol 12 (3) ◽  
pp. 547-557
Author(s):  
Palani G. Kandaswamy ◽  
B. Tamil Selvi ◽  
Lokenath Debnath

A study is made of the propagation of Rossby waves in a stably stratified shear flows. The wave equation for the Rossby waves is derived in an isothermal atmosphere on a beta plane in the presence of a latitudinally sheared zonal flow. It is shown that the wave equation is singular at five critical levels, but the wave absorption takes place only at the two levels where the local relative frequency equals in magnitude to the Brunt Vaisala frequency. This analysis also reveals that these two levels exhibit valve effect by allowing the waves to penetrate them from one side only. The absorption coefficient exp(2πμ)is determined at these levels. Both the group velocity approach and single wave treatment are employed for the investigation of the problem.


2008 ◽  
Vol 74 (3) ◽  
pp. 381-389 ◽  
Author(s):  
Yu. A. ZALIZNYAK ◽  
A. I. YAKIMENKO ◽  
V. M. LASHKIN

AbstractThe generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.


1984 ◽  
Vol 148 ◽  
pp. 193-205 ◽  
Author(s):  
T. R. Akylas ◽  
J.-P. Demurger

A theoretical study is made of the stability of pipe flow with superimposed rigid rotation to finite-amplitude disturbances at high Reynolds number. The non-axisymmetric mode that requires the least amount of rotation for linear instability is considered. An amplitude expansion is developed close to the corresponding neutral stability curve; the appropriate Landau constant is calculated. It is demonstrated that the flow exhibits nonlinear subcritical instability, the nonlinear effects being particularly strong owing to the large magnitude of the Landau constant. These findings support the view that a small amount of extraneous rotation could play a significant role in the transition to turbulence of pipe flow.


1974 ◽  
Vol 59 ◽  
pp. 77-79
Author(s):  
J. C. B. Papaloizou ◽  
R. J. Tayler

Massive main sequence stars are vibrationally unstable to small perturbations excited in the region of nuclear energy generation. This instability may, however, be limited at finite amplitude. Only the fundamental radial mode is unstable with an e-folding time of 105 to 106 pulsation periods; in contrast the overtones have damping times short compared with the growth time of the fundamental. Non-linear effects couple the linear modes. At very low amplitude the energy transfer time between modes is long compared with both growth and damping times and, as the overtones decay, a pure fundamental should result. However, as the amplitude increases, the transfer time becomes less than the growth and damping times. Energy can then be transferred from the fundamental to the overtones and damping can lead to a limitation of amplitude.


2013 ◽  
Vol 70 (7) ◽  
pp. 2214-2233 ◽  
Author(s):  
Gang Chen ◽  
Jian Lu ◽  
Lantao Sun

Abstract The mechanisms of the atmospheric response to climate forcing are analyzed using an example of uniform SST warming in an idealized aquaplanet model. A 200-member ensemble of experiments is conducted with an instantaneous uniform SST warming. The zonal mean circulation changes display a rapid poleward shift in the midlatitude eddy-driven westerlies and the edge of the Hadley cell circulation and a slow equatorward contraction of the circulation in the deep tropics. The shift of the poleward edge of the Hadley cell is predominantly controlled by the eddy momentum flux. It also shifts the eddy-driven westerlies against the surface friction, at a rate much faster than the expectation from the natural variability of the eddy-driven jet (i.e., the e-folding time scale of the annular mode), with much less feedback between the eddies and zonal flow. The transient eddy–zonal flow interactions are delineated using a newly developed finite-amplitude wave activity diagnostic of Nakamura. Applying it to the transient ensemble response to uniform SST warming reveals that the eddy-driven westerlies are shifted poleward by permitting more upward wave propagation in the middle and upper troposphere rather than reducing the lower-tropospheric baroclinicity. The increased upward wave propagation is attributed to a reduction in eddy dissipation of wave activity as a result of a weaker meridional potential vorticity (PV) gradient. The reduction allows more waves to propagate away from the latitudes of baroclinic generation, which, in turn, leads to more poleward momentum flux and a poleward shift of eddy-driven winds and Hadley cell edge.


2020 ◽  
Author(s):  
Noboru Nakamura

<p>We present evidence that stratospheric sudden warmings (SSWs) are, on average, a threshold behavior of finite-amplitude Rossby waves arising from wave-mean flow interaction. Competition between an increasing wave activity and a decreasing zonal-mean zonal wind sets a limit to the upward wave activity flux of a stationary Rossby wave.  A rapid, spontaneous vortex breakdown occurs once the upwelling wave activity flux reaches the limit, or equivalently, once the zonal-mean zonal wind drops below a certain fraction of the wave-free, reference-state wind obtained from the zonalized quasigeostrophic potential vorticity.  This threshold faction is 0.5 in theory and about 0.3 in reanalyses.  We use the ratio of the zonal-mean zonal wind to the reference-state wind as a local, instantaneous measure of the proximity to vortex breakdown, i.e. preconditioning.  The ratio generally stays above the threshold during strong-vortex winters until a pronounced final warming, whereas during weak-vortex winters it approaches the threshold early in the season, culminating in a precipitous drop in midwinter as SSWs form. The essence of the threshold behavior is captured by a semiempirical 1D model of SSWs, analogous to the “traffic jam” model of Nakamura and Huang for atmospheric blocking. This model predicts salient features of SSWs including rapid vortex breakdown and downward migration of the wave activity/zonal wind anomalies, with analytical expressions for the respective timescales. Model’s response to a variety of transient wave forcing and damping is discussed.</p><p> </p><p> </p><div> </div><p> </p>


2015 ◽  
Vol 81 (2) ◽  
Author(s):  
A. Ishizawa ◽  
S. Maeyama ◽  
T.-H. Watanabe ◽  
H. Sugama ◽  
N. Nakajima

Gyrokinetic simulations of electromagnetic turbulence in magnetically confined torus plasmas including tokamak and heliotron/stellarator are reviewed. Numerical simulation of turbulence in finite beta plasmas is an important task for predicting the performance of fusion reactors and a great challenge in computational science due to multiple spatio-temporal scales related to electromagnetic ion and electron dynamics. The simulation becomes further challenging in non-axisymmetric plasmas. In finite beta plasmas, magnetic perturbation appears and influences some key mechanisms of turbulent transport, which include linear instability and zonal flow production. Linear analysis shows that the ion-temperature gradient (ITG) instability, which is essentially an electrostatic instability, is unstable at low beta and its growth rate is reduced by magnetic field line bending at finite beta. On the other hand, the kinetic ballooning mode (KBM), which is an electromagnetic instability, is destabilized at high beta. In addition, trapped electron modes (TEMs), electron temperature gradient (ETG) modes, and micro-tearing modes (MTMs) can be destabilized. These instabilities are classified into two categories: ballooning parity and tearing parity modes. These parities are mixed by nonlinear interactions, so that, for instance, the ITG mode excites tearing parity modes. In the nonlinear evolution, the zonal flow shear acts to regulate the ITG driven turbulence at low beta. On the other hand, at finite beta, interplay between the turbulence and zonal flows becomes complicated because the production of zonal flow is influenced by the finite beta effects. When the zonal flows are too weak, turbulence continues to grow beyond a physically relevant level of saturation in finite-beta tokamaks. Nonlinear mode coupling to stable modes can play a role in the saturation of finite beta ITG mode and KBM. Since there is a quadratic conserved quantity, evaluating nonlinear transfer of the conserved quantity from unstable modes to stable modes is useful for understanding the saturation mechanism of turbulence.


1996 ◽  
Vol 313 ◽  
pp. 147-180 ◽  
Author(s):  
Peter I. Bell ◽  
Andrew M. Soward

Busse's annulus is considered as a model of thermal convection inside the Earth's liquid core. The conventional tilted base and top are modified by azimuthal sinusoidal corrugations so that the effects of surface topography can be investigated. The annulus rotates rapidly about its axis of symmetry with gravity directed radially inwards towards the rotation axis. An unstable radial temperature gradient is maintained and the resulting Boussinesq convection is considered at small Ekman number. Since the corrugations on the boundaries cause the geostrophic contours to be no longer circular, strong geostrophic flows may be driven by buoyancy forces and damped by Ekman suction. When the bumps are sufficiently large, instability of the static state is dominated by steady geostrophic flow with the convection pattern locked to the bumps. As the bump size is decreased, oscillatory geostrophic flow is possible but the preferred mode is modulated on a long azimuthal length scale and propagates as a wave eastwards. This mode only exists in the presence of bumps and is not to be confused with the thermal Rossby waves which are eventually preferred as the bump height tends to zero. Like thermal Rossby waves, the new modes prefer to occupy the longest available radial length scale. In this long-length-scale limit, two finite-amplitude states characterized by uniform geostrophic flows can be determined. The small-amplitude state resembles Or & Busse's (1987) mean flow instability. On losing stability the solution jumps to the more robust large-amplitude state. Eventually, for sufficiently large Rayleigh number and bump height, it becomes unstable to a long-azimuthal-length-scale travelling wave. The ensuing finite-amplitude wave and the mean flow, upon which it rides, are characterized by a geostrophic flow, which is everywhere westward.


Sign in / Sign up

Export Citation Format

Share Document