scholarly journals Acoustic Doppler current profiler observations of migration patternsof zooplankton in the Cretan Sea

Ocean Science ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 783-800 ◽  
Author(s):  
Emmanuel Potiris ◽  
Constantin Frangoulis ◽  
Alkiviadis Kalampokis ◽  
Manolis Ntoumas ◽  
Manos Pettas ◽  
...  

Abstract. The lack of knowledge of the mesopelagic layer inhabitants, especially those performing strong vertical migration, is an acknowledged challenge. This incomplete representation leads to the exclusion of an active carbon and nutrient pathway from the surface to the deeper layers and vice versa. The vertical migration of mesopelagic inhabitants (macroplanktonic and micronektonic) was observed by acoustical means for almost 2.5 years in the epipelagic and mesopelagic layers of the open oligotrophic Cretan Sea (south Aegean Sea, eastern Mediterranean) at the site of an operational fixed-point observatory located at 1500 m depth. The observed organisms were categorized into four groups according to their migration patterns. The variability of the migration patterns was inspected in relation to the physical and biological environmental conditions of the study area. The stratification of the water column does not act as a barrier for the vertical motion of the strongest migrants that move up to 400 m every day. Instead, changes in light intensity (lunar cycle, daylight duration, cloudiness) and the presence of prey and predators seem to explain the observed daily, monthly and seasonal variability. The continuous presence of these organisms, which are capable of vertical motion despite the profound circulation variability at the site of the observatory, implies their presence in the broader study area. The fundamental implications of the above regarding biogeochemical processing in oligotrophic seas due to the intimate link between the carbon (C) and nutrient cycles, are discussed.

2018 ◽  
Author(s):  
Emmanuel Potiris ◽  
Constantin Frangoulis ◽  
Alkiviadis Kalampokis ◽  
Manolis Ntoumas ◽  
Manos Pettas ◽  
...  

Abstract. The lack of knowledge of the mesopelagic layer inhabitants, especially of those performing strong vertical migration, is an acknowledged challenge as its incomplete representation leads to the exclusion of an active carbon and nutrient pathway from the surface to the deeper layers and reversely. The vertical migration of mesopelagic inhabitants (macro-planktonic and micro-nektonic) was observed by acoustical means in the epi- and mesopelagic layer of the open oligotrophic Cretan Sea (Eastern Mediterranean) for almost 2.5 years at the site of an operational fixed-point observatory located at 1500 m depth. The observed organisms were categorized in four groups according to their migration patterns. The variability of the migration patterns was inspected in relation to the physical and biological environmental conditions of the study area. The stratification of the water column does not act as a barrier for the vertical motion of the strongest migrants, moving up to 400 m every day. Instead, changes of light intensity (lunar cycle, daylight duration, cloudiness) and the presence of prey and predators seem to explain the observed daily, monthly and seasonal variability. The continuous presence of these organisms, yet capable of vertical motion and despite the profound seasonal circulation variability at the site of the observatory, implies their presence in the broader study area. The fundamental implications of the above for biogeochemical processing in oligotrophic seas due to the intimate link of the C and nutrient cycles, are discussed.


2014 ◽  
Vol 71 (5) ◽  
pp. 665-674 ◽  
Author(s):  
Lauren Emily Barth ◽  
W. Gary Sprules ◽  
Mathew Wells ◽  
Melissa Coman

We describe a novel seasonal shift in the vertical migration behavior of Chaoborus punctipennis second-instar larvae in Lake Opeongo, Ontario. An upward-looking 600 kHz acoustic Doppler current profiler (ADCP) moored at a fixed 22 m station in the lake recorded acoustic backscatter continuously during the study period. Zooplankton samples collected indicated that the abundance of C. punctipennis larval instars accounted for the greatest proportion of variance in the linear backscatter from the ADCP. The large fourth-instar larvae underwent normal diel vertical migration throughout the study. Smaller second-instar larvae underwent reverse migration during late June but switched to normal migration by late July. The acoustic record indicates that the switch occurred over a few days around late June, and at this time a double vertical migration appeared with the second instars leading and following the migration of fourth instars. We speculate that these changes in the migration of second instars are driven by seasonal shifts in predation risk from larval cisco (Coregonus artedi) and by the need to minimize spatial overlap with the larger fourth instars.


2019 ◽  
Vol 9 (9) ◽  
pp. 1851 ◽  
Author(s):  
Angga Dwinovantyo ◽  
Henry M. Manik ◽  
Tri Prartono ◽  
Susilohadi Susilohadi ◽  
Tohru Mukai

Zooplankton can be detected by using acoustic Doppler current profiler (ADCP) instruments through acquiring the mean volume backscattering strength (MVBS) data. However, the precision of the backscattered signal measured by single ADCP measurement has a limitation in the MVBS variation of zooplankton. The objectives of this study were to analyze the MVBS and vertical velocity from ADCPs at the same time and location for zooplankton’s daily vertical migration (DVM) observation. Measurements were conducted in Lembeh Strait, North Sulawesi, Indonesia. Instruments used included a moored ADCP 750 kHz and a mobile ADCP 307.2 kHz. High MVBS value was found at 11.5–16 m depths and was identified as the sound scattering layer (SSL). The DVM patterns in the SSL displayed significant differences over time and had good relationships with the diurnal cycle. Theoretical target strength (TS) from the scattering models based on a distorted-wave Born approximation (DWBA) was estimated for Oithona sp. and Paracalanus sp.; the two dominant species found in the observed area. However, ΔMVBS and ΔTS proved that the dominant zooplankton species were not the main scatterers. The strong signal in SSL was instead caused by the schools of various zooplankton species.


2006 ◽  
Vol 36 (9) ◽  
pp. 1841-1859 ◽  
Author(s):  
I. Gertman ◽  
N. Pinardi ◽  
Y. Popov ◽  
A. Hecht

Abstract The Aegean water masses and circulation structure are studied via two large-scale surveys performed during the late winters of 1988 and 1990 by the R/V Yakov Gakkel of the former Soviet Union. The analysis of these data sheds light on the mechanisms of water mass formation in the Aegean Sea that triggered the outflow of Cretan Deep Water (CDW) from the Cretan Sea into the abyssal basins of the eastern Mediterranean Sea (the so-called Eastern Mediterranean Transient). It is found that the central Aegean Basin is the site of the formation of Aegean Intermediate Water, which slides southward and, depending on their density, renews either the intermediate or the deep water of the Cretan Sea. During the winter of 1988, the Cretan Sea waters were renewed mainly at intermediate levels, while during the winter of 1990 it was mainly the volume of CDW that increased. This Aegean water mass redistribution and formation process in 1990 differed from that in 1988 in two major aspects: (i) during the winter of 1990 the position of the front between the Black Sea Water and the Levantine Surface Water was displaced farther north than during the winter of 1988 and (ii) heavier waters were formed in 1990 as a result of enhanced lateral advection of salty Levantine Surface Water that enriched the intermediate waters with salt. In 1990 the 29.2 isopycnal rose to the surface of the central basin and a large volume of CDW filled the Cretan Basin. It is found that, already in 1988, the 29.2 isopycnal surface, which we assume is the lowest density of the CDW, was shallower than the Kassos Strait sill and thus CDW egressed into the Eastern Mediterranean.


2008 ◽  
Vol 65 (4) ◽  
pp. 574-587 ◽  
Author(s):  
M Sourisseau ◽  
Y Simard ◽  
F J Saucier

A set of high-resolution observations on short-term dynamics of krill diel vertical migrations (DVM) in the St. Lawrence Estuary are presented here, including vertical mass transfer measurements from multifrequency echo sounding coupled with stratified net sampling and tracers of individual vertical movements from stomach pigments over a 72 h period. The data set is supplemented by vertical migration speeds and biomass diel patterns from ADCP (acoustic Doppler current profiler) time series lasting up to 3 months. All krill always rapidly migrated to the surface in synchrony at sunset. Soon after the ascent, fed krill started to swim downward. A scattering layer was then formed at their daytime depth with sometimes a significant backscatter at intermediate depths, especially around midnight. A reorganisation in the upper water column then occurs, likely for a predawn feeding bout. At dawn, the krill mass still feeding in upper water column synchronously swam downward to their daytime depth. This nocturnal asynchronous vertical behaviour, conforming to the DVM hunger-satiation hypothesis, repeated between August and October in two different years, the DVM timing being determined by day length.


2017 ◽  
Vol 284 (1869) ◽  
pp. 20172015 ◽  
Author(s):  
Geraint A. Tarling ◽  
Sally E. Thorpe

Antarctic krill form some of the highest concentrations of animal biomass observed in the world's oceans potentially due to their prolific ability to swarm. Determining the movement of Antarctic krill within swarms is important to identify drivers of their behaviour and their biogeochemical impact on their environment. We examined vertical velocity within approximately 2000 krill swarms through the combined use of a shipborne echosounder and an acoustic Doppler current profiler. We revealed a pronounced downward anomaly in vertical velocity within swarms of −0.6 cm s −1 compared with vertical motion outside the swarm. The anomaly changed over the diel cycle, with smaller downward anomalies occurring at night. Swarms in regions of high phytoplankton concentrations (a proxy for food availability) also exhibited significantly smaller downward anomalies. We propose that the anomaly is the result of downward velocities generated by the action of krill beating their swimming appendages. During the night and in high phytoplankton availability, when krill are more likely to feed to the point of satiation, swimming activity is lowered and the anomaly is reduced. Our findings are consistent with laboratory work where krill ceased swimming and adopted a parachute posture when sated. Satiation sinking behaviour can substantially increase the efficiency of carbon transport to depth through depositing faecal pellets at the bottom of swarms, avoiding the reingestion and break-up of pellets by other swarm members.


Sign in / Sign up

Export Citation Format

Share Document