scholarly journals Assessment of responses of North Atlantic winter sea surface temperature to the North Atlantic Oscillation on an interannual scale in 13 CMIP5 models

Ocean Science ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1509-1527
Author(s):  
Yujie Jing ◽  
Yangchun Li ◽  
Yongfu Xu

Abstract. This study evaluates the response of winter-average sea surface temperature (SST) to the winter North Atlantic Oscillation (NAO) simulated by 13 Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth system models in the North Atlantic (NA) (0–65∘ N) on an interannual scale. Most of the models can reproduce an observed tripolar pattern of the response of the SST anomalies to the NAO on an interannual scale. The model bias is mainly reflected in the locations of the negative-response centers in the subpolar NA (45–65∘ N), which is mainly caused by the bias of the response of the SST anomalies to the NAO-driven turbulent heat flux (THF) anomalies. Although the influence of the sensible heat flux (SHF) on the SST is similar to that of the latent heat flux (LHF), it seems that the SHF may play a larger role in the response of the SST to the NAO, and the weak negative response of the SST anomalies to the NAO-driven LHF anomalies is mainly caused by the overestimated oceanic role in the interaction of the LHF and SST. Besides the THF, some other factors which may impact the relationship of the NAO and SST are discussed. The relationship of the NAO and SST is basically not affected by the heat meridional advection transports on an interannual timescale, but it may be influenced by the cutoffs of data filtering, the initial fields, and external-forcing data in some individual models, and in the tropical NA it can also be affected by the different definitions of the NAO indices.

2019 ◽  
Vol 32 (22) ◽  
pp. 7675-7695 ◽  
Author(s):  
Jie Jiang ◽  
Tianjun Zhou

Abstract Multidecadal variations in the global land monsoon were observed during the twentieth century, with an overall increasing trend from 1901 to 1955 that was followed by a decreasing trend up to 1990, but the mechanisms governing the above changes remain inconclusive. Based on the outputs of two atmospheric general circulation models (AGCMs) forced by historical sea surface temperature (SST) covering the twentieth century, supplemented with AGCM simulations forced by idealized SST anomalies representing different conditions of the North Atlantic and tropical Pacific, evidence shows that the observed changes can be partly reproduced, particularly over the Northern Hemisphere summer monsoon (NHSM) domain, demonstrating the modulation of decadal SST changes on the long-term variations in monsoon precipitation. Moisture budget analysis is performed to understand the interdecadal changes in monsoon precipitation, and the dynamic term associated with atmospheric circulation changes is found to be prominent, while the contribution of the thermodynamic term associated with humidity changes can lead to coincident wetting over the NHSM domain. The increase (decrease) in NHSM land precipitation during 1901–55 (1956–90) is associated with the strengthening (weakening) of NHSM circulation and Walker circulation. The multidecadal scale changes in atmospheric circulation are driven by SST anomalies over the North Atlantic and the Pacific. A warmer North Atlantic together with a colder eastern tropical Pacific and a warmer western subtropical Pacific can lead to a strengthened meridional gradient in mid-to-upper-tropospheric thickness and strengthened trade winds, which transport more water vapor into monsoon regions, leading to an increase in monsoon precipitation.


2012 ◽  
Vol 25 (8) ◽  
pp. 2995-3009 ◽  
Author(s):  
Ming Zhao ◽  
Isaac M. Held

Abstract A tropical cyclone–permitting global atmospheric model is used to explore the hurricane frequency response to sea surface temperature (SST) anomalies generated by coupled models for the late-twenty-first century. Results are presented for SST anomalies averaged over 18 models as well as from 8 individual models. For each basin, there exists large intermodel spread in the magnitude and even the sign of the frequency response among the different SST projections. These sizable variations in response are explored to understand features of SST distributions that are important for the basin-wide hurricane responses. In the North Atlantic, the eastern Pacific, and the southern Indian basins, most (72%–86%) of the intermodel variance in storm frequency response can be explained by a simple relative SST index defined as a basin’s storm development region SST minus the tropical mean SST. The explained variance is significantly lower in the South Pacific (48%) and much lower in the western Pacific basin (27%). Several atmospheric parameters are utilized to probe changes in tropical atmospheric circulation and thermodynamical properties relevant to storm genesis in the model. While all present strong correlation to storm response in some basins, a parameter-measuring tropospheric convective mass flux stands out as skillful in explaining the simulated differences for all basins. Globally, in addition to a modest reduction of total storm frequency, the simulations exhibit a small, but robust eastward and poleward migration of genesis frequency in both the North Pacific and the North Atlantic Oceans. This eastward migration of storms can also be explained by changes in convection.


2014 ◽  
Vol 28 (1) ◽  
pp. 306-323 ◽  
Author(s):  
Bolan Gan ◽  
Lixin Wu

Abstract In this study, the lagged maximum covariance analysis is performed on winter storm-track anomalies, represented by the meridional heat flux by synoptic-scale (2–8 days) transient eddies and sea surface temperature (SST) anomalies in the North Atlantic, which are both derived from reanalysis datasets spanning the twentieth century. The analysis shows significant seasonal and interannual coupling between storm-track and SST variations. On seasonal time scales, it is found that SST anomalies in the preceding early winter (November–December), which are expected to change the lower-tropospheric baroclinicity, can significantly influence storm tracks in early spring (March); that is, an intensification and slight northward shift of storm tracks in response to a midlatitude SST dipole, with a cold pole centered to the southeast of Newfoundland and a warm pole in the western subtropical Atlantic. This storm-track response pattern is similar to the storm-track forcing pattern in early spring, which resembles the dominant mode of storm tracks. At interannual time scales, it is found that the wintertime (January–March) storm-track and SST anomalies are mutually reinforced, manifesting as a zonal-dipole-like pattern in storm-track anomalies (with dominant negative anomalies in the downstream) coupled with a midlatitude SST monopole (with warm anomalies centered to the south and east of Newfoundland).


2003 ◽  
Vol 16 (9) ◽  
pp. 1364-1377 ◽  
Author(s):  
Gaëlle de Coëtlogon ◽  
Claude Frankignoul

Abstract The impact of the seasonal variations of the mixed-layer depth on the persistence of sea surface temperature (SST) anomalies is studied in the North Atlantic, using observations. A significant recurrence of winter SST anomalies during the following winter occurs in most of the basin, but not in the subtropical area of strong subduction. When taking reemergence into account, the e-folding timescale of winter SST anomalies generally exceeds 1 yr, and is about 16 months for the dominant SST anomaly tripole. The influence of advection by the mean oceanic currents is investigated by allowing for a displacement of the maximum recurrent correlation and, alternatively, by considering the SST anomaly evolution along realistic mean displacement paths. Taking into account the nonlocality of the reemergence generally increases the wintertime persistence, most notably in the northern part of the domain. The passive response of the mixed layer to the atmospheric forcing thus has a red spectrum down to near-decadal frequencies.


2020 ◽  
Vol 33 (14) ◽  
pp. 6025-6045
Author(s):  
Jing Sun ◽  
Mojib Latif ◽  
Wonsun Park ◽  
Taewook Park

AbstractThe North Atlantic (NA) basin-averaged sea surface temperature (NASST) is often used as an index to study climate variability in the NA sector. However, there is still some debate on what drives it. Based on observations and climate models, an analysis of the different influences on the NASST index and its low-pass filtered version, the Atlantic multidecadal oscillation (AMO) index, is provided. In particular, the relationships of the two indices with some of its mechanistic drivers including the Atlantic meridional overturning circulation (AMOC) are investigated. In observations, the NASST index accounts for significant SST variability over the tropical and subpolar NA. The NASST index is shown to lump together SST variability originating from different mechanisms operating on different time scales. The AMO index emphasizes the subpolar SST variability. In the climate models, the SST-anomaly pattern associated with the NASST index is similar. The AMO index, however, only represents pronounced SST variability over the extratropical NA, and this variability is significantly linked to the AMOC. There is a sensitivity of this linkage to the cold NA SST bias observed in many climate models. Models suffering from a large cold bias exhibit a relatively weak linkage between the AMOC and AMO and vice versa. Finally, the basin-averaged SST in its unfiltered form, which has been used to question a strong influence of ocean dynamics on NA SST variability, mixes together multiple types of variability occurring on different time scales and therefore underemphasizes the role of ocean dynamics in the multidecadal variability of NA SSTs.


Sign in / Sign up

Export Citation Format

Share Document