scholarly journals Study of the tidal dynamics of the Korea Strait using the extended Taylor method

Ocean Science ◽  
2021 ◽  
Vol 17 (2) ◽  
pp. 579-591
Author(s):  
Di Wu ◽  
Guohong Fang ◽  
Zexun Wei ◽  
Xinmei Cui

Abstract. The Korea Strait (KS) is a major navigation passage linking the Japan Sea (JS) to the East China Sea and Yellow Sea. Almost all existing studies of the tides in the KS employed either data analysis or numerical modelling methods; thus, theoretical research is lacking. In this paper, we idealize the KS–JS basin as four connected uniform-depth rectangular areas and establish a theoretical model for the tides in the KS and JS using the extended Taylor method. The model-produced K1 and M2 tides are consistent with the satellite altimeter and tidal gauge observations, especially for the locations of the amphidromic points in the KS. The model solution provides the following insights into the tidal dynamics. The tidal system in each area can be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves dominating the tidal system. The incident Kelvin wave can be reflected at the connecting cross section, where abrupt increases in water depth and basin width occur from the KS to JS. At the connecting cross section, the reflected wave has a phase-lag increase relative to the incident wave of less than 180∘, causing the formation of amphidromic points in the KS. The above phase-lag increase depends on the angular velocity of the wave and becomes smaller as the angular velocity decreases. This dependence explains why the K1 amphidromic point is located farther away from the connecting cross section in comparison to the M2 amphidromic point.

2020 ◽  
Author(s):  
Di Wu ◽  
Guohong Fang ◽  
Zexun Wei ◽  
Xinmei Cui

Abstract. The Korea Strait (KS) is a major navigation passage linking the Japan Sea (JS) to the East China Sea and Yellow Sea. Almost all existing studies on the tides in the KS employed either data analysis or numerical modelling methods; thus, theoretical research is lacking. In this paper, we idealize the KS-JS basin as three connected uniform-depth rectangular areas and establish a theoretical model for the tides in the KS and JS using the extended Taylor method. The model-produced K1 and M2 tides are consistent with the satellite altimeter and tidal gauge observations, especially for the locations of the amphidromic points in the KS. The model solution provides the following insights into the tidal dynamics. The tidal system in each area can be decomposed into two oppositely travelling Kelvin waves and two families of Poincaré modes, with Kelvin waves dominating the tidal system. The incident Kelvin wave can be reflected at the connecting cross-section, where abrupt increases in water depth and basin width occur from the KS to JS. At the connecting cross-section, the reflected wave has a phase-lag increase relative to the incident wave by less than 180°, causing the formation of amphidromic points in the KS. The above phase-lag increase depends on the angular frequency of the wave and becomes smaller as the angular frequency decreases. This dependence explains why the K1 amphidromic point is located farther away from the connecting cross-section in comparison to the M2 amphidromic point.


1969 ◽  
Vol 39 (2) ◽  
pp. 321-328 ◽  
Author(s):  
B. A. Packham

The problem of the reflexion of tides in an enclosed sea such as the North Sea at a point at which it either enters the ocean or its width suddenly increases is considered by investigating the reflexion of a Kelvin wave at the open end of a rotating uniform semi-infinite channel.It is shown that for a given channel, if the wave period is less than a pendulum day, then, according to the linearized theory of long waves in a rotating system, the reflexion coefficient increases with the angular velocity of rotation. It is also shown that there is a resonance effect for certain critical channel widths, namely, those at which extra modes within the channel become possible.


2020 ◽  
pp. 123-126
Author(s):  
В.В. Кожемякин ◽  
Р.А. Иванов ◽  
Е.С. Игнатьева

Работа посвящена расчетно-теоретическому исследованию работы блока инжекторов. Рассмотрен пароводяной струйный аппарат, который применяется в качестве средства циркуляции теплоносителя первого контура. Подвод дополнительного потока осуществляется на цилиндрическом участке с внезапным расширением сечения через перемычку. Для достижения поставленной цели разработана программа для ЭМВ, в которой смоделирована зависимость давления от нагрузки в контуре, а также проведено расчетно-теоретическое исследование влияние гидравлического сопротивления на расход перемычки. В данной работе рассмотрены только рабочие режимы, т.е. все инжекторы работают как насосы. В ходе работы было установлено, что при нагрузке в 30% увеличиваются коэффициенты инжекции пароводяного струйного аппарата, но характер работы перемычек не меняется. Так же было установлено, что расход через перемычку меняется не пропорционально коэффициенту гидравлического сопротивления перемычки. The paper is devoted to the computational and theoretical study of the injector block operation. A steam-water jet apparatus is considered, which is used as a means of circulating the primary circle coolant. The additional flow is supplied on the cylindrical section with a sudden expansion of the cross-section through the bridge. To achieve this goal, a computer program was developed that modeled the pressure dependence on the load in the circuit, and also a theoretical study of the influence of hydraulic resistance on the flow of the jumper was conducted. In this paper, only operating modes are considered, i.e. all the injectors function as pumps. In the process of the research, it was found that at a load of 30%, the injection coefficients of the steam-water jet apparatus increase, but the nature of the work of the jumpers does not change. It was also found out that the flow rate through the jumper does not change in proportion to the coefficient of hydraulic resistance of the jumper.


2011 ◽  
Vol 687 ◽  
pp. 194-208 ◽  
Author(s):  
Andrew McC. Hogg ◽  
William K. Dewar ◽  
Pavel Berloff ◽  
Marshall L. Ward

AbstractThe interaction of a dipolar vortex with topography is examined using a combination of analytical solutions and idealized numerical models. It is shown that an anticyclonic vortex may generate along-topography flow with sufficient speeds to excite hydraulic control with respect to local Kelvin waves. A critical condition for Kelvin wave hydraulic control is found for the simplest case of a 1.5-layer shallow water model. It is proposed that in the continuously stratified case this mechanism may allow an interaction between low mode vortices and higher mode Kelvin waves, thereby generating rapidly converging isopycnals and hydraulic jumps. Thus, Kelvin wave hydraulic control may contribute to the flux of energy from mesoscale to smaller, unbalanced, scales of motion in the ocean.


2015 ◽  
Vol 73 (1) ◽  
pp. 407-428 ◽  
Author(s):  
Michael J. Herman ◽  
Zeljka Fuchs ◽  
David J. Raymond ◽  
Peter Bechtold

Abstract The authors analyze composite structures of tropical convectively coupled Kelvin waves (CCKWs) in terms of the theory of Raymond and Fuchs using radiosonde data, 3D analysis and reanalysis model output, and annual integrations with the ECMWF model on the full planet and on an aquaplanet. Precipitation anomalies are estimated using the NOAA interpolated OLR and TRMM 3B42 datasets, as well as using model OLR and rainfall diagnostics. Derived variables from these datasets are used to examine assumptions of the theory. Large-scale characteristics of wave phenomena are robust in all datasets and models where Kelvin wave variance is large. Indices from the theory representing column moisture and convective inhibition are also robust. The results suggest that the CCKW is highly dependent on convective inhibition, while column moisture does not play an important role.


Ocean Science ◽  
2018 ◽  
Vol 14 (1) ◽  
pp. 117-126 ◽  
Author(s):  
Di Wu ◽  
Guohong Fang ◽  
Xinmei Cui ◽  
Fei Teng

Abstract. The tides in the Taiwan Strait (TS) feature large semidiurnal lunar (M2) amplitudes. An extended Taylor method is employed in this study to provide an analytical model for the M2 tide in the TS. The strait is idealized as a rectangular basin with a uniform depth, and the Coriolis force and bottom friction are retained in the governing equations. The observed tides at the northern and southern openings are used as open boundary conditions. The obtained analytical solution, which consists of a stronger southward propagating Kelvin wave, a weaker northward propagating Kelvin wave, and two families of Poincaré modes trapped at the northern and southern openings, agrees well with the observations in the strait. The superposition of two Kelvin waves basically represents the observed tidal pattern, including an anti-nodal band in the central strait, and the cross-strait asymmetry (greater amplitudes in the west and smaller in the east) of the anti-nodal band. Inclusion of Poincaré modes further improves the model result in that the cross-strait asymmetry can be better reproduced. To explore the formation mechanism of the northward propagating wave in the TS, three experiments are carried out, including the deep basin south of the strait. The results show that the southward incident wave is reflected to form a northward wave by the abruptly deepened topography south of the strait, but the reflected wave is slightly weaker than the northward wave obtained from the above analytical solution, in which the southern open boundary condition is specified with observations. Inclusion of the forcing at the Luzon Strait strengthens the northward Kelvin wave in the TS, and the forcing is thus of some (but lesser) importance to the M2 tide in the TS.


2017 ◽  
Vol 17 (2) ◽  
pp. 793-806 ◽  
Author(s):  
Barbara Scherllin-Pirscher ◽  
William J. Randel ◽  
Joowan Kim

Abstract. Tropical temperature variability over 10–30 km and associated Kelvin-wave activity are investigated using GPS radio occultation (RO) data from January 2002 to December 2014. RO data are a powerful tool for quantifying tropical temperature oscillations with short vertical wavelengths due to their high vertical resolution and high accuracy and precision. Gridded temperatures from GPS RO show the strongest variability in the tropical tropopause region (on average 3 K2). Large-scale zonal variability is dominated by transient sub-seasonal waves (2 K2), and about half of sub-seasonal variance is explained by eastward-traveling Kelvin waves with periods of 4 to 30 days (1 K2). Quasi-stationary waves associated with the annual cycle and interannual variability contribute about a third (1 K2) to total resolved zonal variance. Sub-seasonal waves, including Kelvin waves, are highly transient in time. Above 20 km, Kelvin waves are strongly modulated by the quasi-biennial oscillation (QBO) in stratospheric zonal winds, with enhanced wave activity during the westerly shear phase of the QBO. In the tropical tropopause region, however, peaks of Kelvin-wave activity are irregularly distributed in time. Several peaks coincide with maxima of zonal variance in tropospheric deep convection, but other episodes are not evidently related. Further investigations of convective forcing and atmospheric background conditions are needed to better understand variability near the tropopause.


Perception ◽  
1997 ◽  
Vol 26 (1_suppl) ◽  
pp. 16-16 ◽  
Author(s):  
P Tse

When a white figure is set in smooth continuous motion against a dark background, a ‘shadowy’ region forms around and behind it, somewhat similar to the wake that a boat leaves in water. Conversely, when a dark figure moves against a white background, this ‘wake’ appears lighter than the background. When several such figures move, these ‘wakes’ can link up in surprising ways. For example, if four white circles of radius r are positioned on a dark background at the vertices of an imaginary square whose width is, say, 4 r, and this imaginary square rotates about its centre, bands darker than the background form between the four circles, linking them through the centre. This ‘black cross’ is nonrigid, and is accompanied by dark ‘wakes’ on the outside of the circles. I call these illusory brightness regions ‘plasmas’. The relation of this effect to other motion-induced brightness illusions is considered. In particular, this effect has different properties than either induced gratings (McCourt, 1982 Vision Research22 119 – 134) or phantom gratings (Tynan and Sekuler, 1975 Science188 951 – 952). Plasmas are not due to retinal afterimages or persistence, since they form in regions never traversed by the moving figure. Nor are they an artifact of the computer screen, since the illusion occurs equally well in displays constructed from paper. Plasmas have the opposite phase relative to the inducing figure, disappear when a figure stops moving, are strongest at high background/inducer contrast, and are most visible when the luminance of the inducers is in the photopic range. Experiments measuring the strength of plasmas as a function of angular velocity and visual angle are described. A model is proposed according to which plasmas are due to a phase lag in luminance-edge induced lateral inhibition.


1981 ◽  
Vol 32 (5) ◽  
pp. 685 ◽  
Author(s):  
JA Church ◽  
AMG Fobes

A non-linear barotropic model was used to evaluate the tidal regime in the Gulf of Carpentaria. The model was forced by open boundary conditions specified on a line joining Wessel Islands to False Cape and a volume flow through Torres Strait estimated from tidal constants on each side of the Strait. The model gives results in agreement with the available observations and in particular predicts mixed tides in the northern half of the Gulf and diurnal tides in the south-east corner of the Gulf. The diurnal tide consists of a Kelvin wave entering the Gulf in the north-west and propagating clockwise around the Gulf with one amphidromic point. The higher frequencies of the semidiurnal tides allow the generation of a first-mqde Poincare wave and the trapping of energy in the northern half of the Gulf. Amphidromes near Mornington Island and Groote Eylandt are also predicted, as is a region of low amplitude and rapid phase variations in the centre of the Gulf.


2015 ◽  
Vol 143 (10) ◽  
pp. 3996-4011 ◽  
Author(s):  
Carl J. Schreck

Abstract Convectively coupled atmospheric Kelvin waves are among the most prominent sources of synoptic-scale rainfall variability in the tropics, but large uncertainties surround their role in tropical cyclogenesis. This study identifies the modulation of tropical cyclones relative to the passage of a Kelvin wave’s peak rainfall (i.e., its crest) in each basin. Tropical cyclogenesis is generally inhibited for 3 days before the crest and enhanced for 3 days afterward. Composites of storms forming in the most favorable lags illustrate the dynamical impacts of the waves. In most basins, the tropical cyclone actually forms during the convectively suppressed phase of the wave. The 850-hPa equatorial westerly anomalies provide the cyclonic vorticity for the nascent storm, and 200-hPa easterly anomalies enhance the outflow. The wind anomalies persist at both levels longer than the Kelvin wave’s period and are often related to the Madden–Julian oscillation (MJO). The onset of these wind anomalies occurs with the Kelvin wave passage, while the MJO apparently establishes their duration. Many of the composites also show evidence of an easterly wave from which the tropical cyclone develops. The composite easterly wave amplifies or even initiates within the Kelvin wave crest. These results show the importance of Kelvin waves interacting with the MJO and easterly waves during tropical cyclogenesis. Given that Kelvin waves often circumnavigate the globe, these results show promise for long-range forecasting of tropical cyclogenesis in all basins.


Sign in / Sign up

Export Citation Format

Share Document