scholarly journals Wind forcing of salinity anomalies in the Denmark Strait overflow

Ocean Science ◽  
2011 ◽  
Vol 7 (6) ◽  
pp. 821-834 ◽  
Author(s):  
S. Hall ◽  
S. R. Dye ◽  
K. J. Heywood ◽  
M. R. Wadley

Abstract. The overflow of dense water from the Nordic Seas to the North Atlantic through Denmark Strait is an important part of the global thermohaline circulation. The salinity of the overflow plume has been measured by an array of current meters across the continental slope off the coast of Angmagssalik, southeast Greenland since September 1998. During 2004 the salinity of the overflow plume changed dramatically; the entire width of the array (70 km) freshened between January 2004 and July 2004, with a significant negative salinity anomaly of about 0.06 in May. The event in May represents a fresh anomaly of over 3 standard deviations from the mean since recording began in 1998. The OCCAM 1/12° Ocean General Circulation Model not only reproduces the 2004 freshening event (r=0.96, p<0.01), but also correlates well with salinity observations over a previous 6 year period (r=0.54, p<0.01), despite the inevitable limitations of a z-coordinate model in representing the mixing processes at and downstream of the Denmark Strait sill. Consequently the physical processes causing the 2004 anomaly and prior variability in salinity are investigated using the model output. Our results reject the hypotheses that the anomaly is caused by processes occurring between the overflow sill and the moorings, or by an increase in upstream net freshwater input. Instead, we show that the 2004 salinity anomaly is caused by an increase in volume flux of low salinity water, with a potential density greater than 27.60 kg m−3, flowing towards the Denmark Strait sill in the East Greenland Current. This is caused by an increase in southward wind stress upstream of the sill at around 75° N 20° W four and a half months earlier, and an associated strengthening of the East Greenland Current.

2011 ◽  
Vol 8 (3) ◽  
pp. 1403-1440 ◽  
Author(s):  
S. Hall ◽  
S. R. Dye ◽  
K. J. Heywood ◽  
M. R. Wadley

Abstract. The overflow of dense water from the Nordic Seas to the North Atlantic through Denmark Strait is an important part of the global thermohaline circulation. The salinity of the overflow plume has been measured by an array of current meters across the continental slope off the coast of Angmagssalik, southeast Greenland since September 1998. During 2004 the salinity of the overflow plume changed dramatically, with the entire width of the array (70 km) freshening between January 2004 and July 2004, with a significant negative salinity anomaly of about 0.06 in May. The event in May represents a fresh anomaly of over 3 standard deviations from the mean since recording began in 1998. We show that the OCCAM 1/12° Ocean General Circulation Model not only reproduces the 2004 freshening event (r=0.96, p<0.01), but also correlates well with salinity observations over a previous 6 year period (r=0.54, p<0.01). Consequently the physical processes causing the 2004 anomaly and prior variability in salinity are investigated using the model output. Our results reject the hypotheses that the anomaly is caused by processes occurring between the overflow sill and the moorings, or by an increase in upstream net freshwater input. Instead, we show that the 2004 salinity anomaly is caused by an increase in volume flux of low salinity water, with a potential density greater than 27.60 kg m−3, flowing towards the Denmark Strait sill in the East Greenland Current. This is caused by an increase of southward wind stress upstream of the sill at around 75° N 20° W four and a half months earlier, and an associated spin-up of the Greenland Sea Gyre.


2022 ◽  
Author(s):  
Jiangbo Jin ◽  
Run Guo ◽  
Minghua Zhang ◽  
Guangqing Zhou ◽  
Qingcun Zeng

Abstract. Tides play an important role in ocean energy transfer and mixing, and provide major energy for maintaining thermohaline circulation. This study proposes a new explicit tidal scheme and assesses its performance in a global ocean model. Instead of using empirical specifications of tidal amplitudes and frequencies, the new scheme directly uses the positions of the Moon and Sun in a global ocean model to incorporate tides. Compared with the traditional method that has specified tidal constituents, the new scheme can better simulate the diurnal and spatial characteristics of the tidal potential of spring and neap tides as well as the spatial patterns and magnitudes of major tidal constituents (K1 and M2). It significantly reduces the total errors of eight tidal constituents (with the exception of N2 and Q1) in the traditional explicit tidal scheme. Relative to the control simulation without tides, both the new and traditional tidal schemes can lead to better dynamic sea level (DSL) simulation in the North Atlantic, reducing significant negative biases in this region. The new tidal scheme also shows smaller positive bias than the traditional scheme in the Southern Ocean. The new scheme is suited to calculate regional distributions of sea level height in addition to tidal mixing.


2007 ◽  
Vol 37 (4) ◽  
pp. 896-907 ◽  
Author(s):  
Alexey Fedorov ◽  
Marcelo Barreiro ◽  
Giulio Boccaletti ◽  
Ronald Pacanowski ◽  
S. George Philander

Abstract The impacts of a freshening of surface waters in high latitudes on the deep, slow, thermohaline circulation have received enormous attention, especially the possibility of a shutdown in the meridional overturning that involves sinking of surface waters in the northern Atlantic Ocean. A recent study by Fedorov et al. has drawn attention to the effects of a freshening on the other main component of the oceanic circulation—the swift, shallow, wind-driven circulation that varies on decadal time scales and is closely associated with the ventilated thermocline. That circulation too involves meridional overturning, but its variations and critical transitions affect mainly the Tropics. A surface freshening in mid- to high latitudes can deepen the equatorial thermocline to such a degree that temperatures along the equator become as warm in the eastern part of the basin as they are in the west, the tropical zonal sea surface temperature gradient virtually disappears, and permanently warm conditions prevail in the Tropics. In a model that has both the wind-driven and thermohaline components of the circulation, which factors determine the relative effects of a freshening on the two components and its impact on climate? Studies with an idealized ocean general circulation model find that vertical diffusivity is one of the critical parameters that affect the relative strength of the two circulation components and hence their response to a freshening. The spatial structure of the freshening and imposed meridional temperature gradients are other important factors.


2003 ◽  
Vol 15 (1) ◽  
pp. 13-23 ◽  
Author(s):  
DAVID M. HOLLAND ◽  
STANLEY S. JACOBS ◽  
ADRIAN JENKINS

We applied a modified version of the Miami isopycnic coordinate ocean general circulation model (MICOM) to the ocean cavity beneath the Ross Ice Shelf to investigate the circulation of ocean waters in the sub-ice shelf cavity, along with the melting and freezing regimes at the base of the ice shelf. Model passive tracers are utilized to highlight the pathways of waters entering and exiting the cavity, and output is compared with data taken in the cavity and along the ice shelf front. High Salinity Shelf Water on the western Ross Sea continental shelf flows into the cavity along the sea floor and is transformed into Ice Shelf Water upon contact with the ice shelf base. Ice Shelf Water flows out of the cavity mainly around 180°, but also further east and on the western side of McMurdo Sound, as observed. Active ventilation of the region near the ice shelf front is forced by seasonal variations in the density structure of the water column to the north, driving rapid melting. Circulation in the more isolated interior is weaker, leading to melting at deeper ice and refreezing beneath shallower ice. Net melting over the whole ice shelf base is lower than other estimates, but is likely to increase as additional forcings are added to the model.


2014 ◽  
Vol 44 (12) ◽  
pp. 3033-3053 ◽  
Author(s):  
Jiayan Yang ◽  
Lawrence J. Pratt

Abstract The East Greenland Current (EGC) had long been considered the main pathway for the Denmark Strait overflow (DSO). Recent observations, however, indicate that the north Icelandic jet (NIJ), which flows westward along the north coast of Iceland, is a major separate pathway for the DSO. In this study a two-layer numerical model and complementary integral constraints are used to examine various pathways that lead to the DSO and to explore plausible mechanisms for the NIJ’s existence. In these simulations, a westward and NIJ-like current emerges as a robust feature and a main pathway for the Denmark Strait overflow. Its existence can be explained through circulation integrals around advantageous contours. One such constraint spells out the consequences of overflow water as a source of low potential vorticity. A stronger constraint can be added when the outflow occurs through two outlets: it takes the form of a circulation integral around the Iceland–Faroe Ridge. In either case, the direction of overall circulation about the contour can be deduced from the required frictional torques. Some effects of wind stress forcing are also examined. The overall positive curl of the wind forces cyclonic gyres in both layers, enhancing the East Greenland Current. The wind stress forcing weakens but does not eliminate the NIJ. It also modifies the sign of the deep circulation in various subbasins and alters the path by which overflow water is brought to the Faroe Bank Channel, all in ways that bring the idealized model more in line with observations. The sequence of numerical experiments separates the effects of wind and buoyancy forcing and shows how each is important.


2006 ◽  
Vol 2 (4) ◽  
pp. 605-631 ◽  
Author(s):  
G. Lohmann ◽  
M. Butzin ◽  
A. Micheels ◽  
T. Bickert ◽  
V. Mosbrugger

Abstract. A weak and shallow thermohaline circulation in the North Atlantic Ocean is related to an open Central American gateway and exchange with fresh Pacific waters. We estimate the effect of vegetation on the ocean general circulation using the atmospheric circulation model simulations for the Late Miocene climate. Caused by an increase in net evaporation in the Miocene North Atlantic, the North Atlantic water becomes more saline which enhances the overturning circulation and thus the northward heat transport. This effect reveals a potentially important feedback between the ocean circulation, the hydrological cycle and the land surface cover for Cenozoic climate evolution.


2012 ◽  
Vol 5 (3) ◽  
pp. 793-808 ◽  
Author(s):  
Y. Kamae ◽  
H. Ueda

Abstract. The mid-Pliocene (3.3 to 3.0 million yr ago), a globally warm period before the Quaternary, is recently attracting attention as a new target for paleoclimate modelling and data-model synthesis. This paper reports set-ups and results of experiments proposed in Pliocene Model Intercomparison Project (PlioMIP) using a global climate model, MRI-CGCM2.3. We conducted pre-industrial and mid-Pliocene runs by using the coupled atmosphere-ocean general circulation model (AOGCM) and its atmospheric component (AGCM) for the PlioMIP Experiments 2 and 1, respectively. In addition, we conducted two types of integrations in AOGCM simulation, with and without flux adjustments on sea surface. General characteristics of differences in the simulated mid-Pliocene climate relative to the pre-industrial in the three integrations are compared. In addition, patterns of predicted mid-Pliocene biomes resulting from the three climate simulations are compared in this study. Generally, difference of simulated surface climate between AGCM and AOGCM is larger than that between the two AOGCM runs, with and without flux adjustments. The simulated climate shows different pattern between AGCM and AOGCM particularly over low latitude oceans, subtropical land regions and high latitude oceans. The AOGCM simulations do not reproduce wetter environment in the subtropics relative to the present-day, which is suggested by terrestrial proxy data. The differences between the two types of AOGCM runs are small over the land, but evident over the ocean particularly in the North Atlantic and polar regions.


Sign in / Sign up

Export Citation Format

Share Document