scholarly journals Heat and dry islands observed over Jakarta, Indonesia, in 2012

Author(s):  
H. Widyasamratri ◽  
K. Souma ◽  
T. Suetsugi ◽  
H. Ishidaira ◽  
Y. Ichikawa ◽  
...  

Abstract. Recent population increases in urban areas of Asian countries have extended artificial land cover, increased energy consumption, and caused various problems. Higher air temperatures over urban areas (heat islands) degrade residential environments and affect human health. In Jakarta, the largest city in Indonesia and the second largest city in Asia, previous studies have relied on only a few observation points and physically-based models. To study the thermal environment in Jakarta in more detail, we performed seven fixed-point temperature and humidity observations from the dry to the pre-monsoon season (from 16 September to 18 October) in 2012. Over densely urbanized areas, higher temperatures and lower humidity were observed around noon compared with the sparsely urbanized areas. The maximum differences in temperature and specific humidity were found to be around 3 °C and 0.005 kg/kg, respectively. The differences in temperature and humidity became smaller in the afternoon because of the penetration of sea breezes. At night, the differences became larger again because the sea breeze weakened. Then, a difference of around 3°C was observed, except in the early morning. Although the difference in daytime temperature was smaller between densely urbanized areas and suburban areas, similar tendency was also confirmed in the daily time series averaged for sunny days in dry season.

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1234
Author(s):  
Atsumasa Yoshida ◽  
Ryusuke Yasuda ◽  
Shinichi Kinoshita

Thermal environment of urban areas in the summertime has become harmful to human health due to global warming and the urban heat island (UHI) effect. Mobile observations enable us to obtain the distribution of air temperature at microscale, such as urban blocks, which cannot be captured by the coarse network of meteorological sites. A series of mobile measurements was executed in the central area of Osaka City in Japan, around the Nakanoshima district which lies between two rivers, to investigate the air temperature and humidity distributions in a built-up area under sea breeze conditions. Upper wind and surface temperature of the rivers were also observed using pilot balloons and infrared thermography camera, respectively. The mean air temperature in Nakanoshima was generally lower than that of the surrounding area. Urban geometries such as building density and building height seem to affect the mean air temperature by changing the ventilation efficiency. Humidity was inversely correlated with air temperature distribution but was higher at the confluence of rivers and green parks. The depth of the sea breeze layer was found to be about 1 km. Sea breezes close to the ground surface penetrated the city along the rivers, sandwiching the Nakanoshima district. During the daytime, the surface temperatures of the rivers were lower than the air temperature observed at the nearest stationary observation point, and the difference reached approximately 2 °C.


Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 840
Author(s):  
Cláudia Reis ◽  
António Lopes ◽  
Ezequiel Correia ◽  
Marcelo Fragoso

Urbanized hot spots incorporate a great diversity of microclimates dependent, among other factors, on local meteorological conditions. Until today, detailed analysis of the combination of climatic variables at local scale are very scarce in urban areas. Thus, there is an urgent need to produce a Local Weather Type (LWT) classification that allows to exhaustively distinguish different urban thermal patterns. In this study, hourly data from air temperature, wind speed and direction, accumulated precipitation, cloud cover and specific humidity (2009–2018) were integrated in a cluster analysis (K-means) in order to produce a LWT classification for Lisbon’s urban area. This dataset was divided by daytime and nighttime and thermal periods, which were generated considering the annual cycle of air temperatures. Therefore, eight LWT sets were generated. Results show that N and NW LWT are quite frequent throughout the year, with a moderate speed (daily average of 4–6 m/s). In contrast, the frequency of rainy LWT is considerably lower, especially in summer (below 10%). Moreover, during this season the moisture content of the air masses is higher, particularly at night. This methodology will allow deepening the knowledge about the multiple Urban Heat Island (UHI) patterns in Lisbon.


2016 ◽  
Author(s):  
Mark L. Carroll ◽  
Molly E. Brown ◽  
Margaret R. Wooten ◽  
Joel E. Donham ◽  
Alfred B. Hubbard ◽  
...  

Abstract. As our climate changes through time there is an ever increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt MD conducted a study to collect temperature and humidity data at 15 minute intervals from 12 sites on center. These sites represented the major surface types on center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces on the center and the difference between the average value for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.


MAUSAM ◽  
2021 ◽  
Vol 43 (2) ◽  
pp. 163-168
Author(s):  
J. C. MANDAL ◽  
S. R. HALDER

Characteristic features of district cloud-free zones and their day to day evolution along Indian coasts as observed in INSAT cloud imageries during southwest monsoon months  have been analysed and discussed along with sea surface and surface air temperatures and monsoon condition situation. It was a weak or break monsoon condition. Appearance of early morning clear zone just off shore along Indian Peninsula coasts is attributed to the gradual lowering of sea surface temperate due to upwelling caused by persistent favorable surface wind and slow-setting of air above colder water. With the advance of the day, wide extension of clear area over water where it ends abruptly and propagation of front-like zone inland manifest as a typical sea breeze. It is postulated that this is the effect of sea breeze circulation and shrinking of air above colder water. It is inferred that time-to-time appearance of such phenomenon may be an Indication of longer weak or break monsoon over the Peninsula.


2015 ◽  
Vol 35 (2) ◽  
pp. 206-214
Author(s):  
FERNANDO G. DE OLIVEIRA ◽  
WANESSA M. GODOI ◽  
ROBERTA PASSINI

Brazil is a country of tropical climate, a fact that hinders the poultry production in the aspect of thermal comfort. Thus, we aimed to evaluate the thermal environment in commercial poultry houses with different covers during the months of December 2012 to May 2013, in the municipality of Rio Verde, Goiás. The experimental design was completely randomized in split plots with factorial arrangement of treatments 2x3, being two shed models (thermal and aluminum roof tiles) and three sections within each shed (initial, central and final) for 182 days, having the days as replicates. The thermal environment was assessed through thermal comfort indices: Temperature and Humidity Index, Black Globe Temperature and Humidity Index, Radiant Heat Load and Enthalpy. The data was analyzed by SISVAR 5.1., through the analysis of variance, the Scott Knott test used to compare the means, considering a significance level of 1%. The results showed a significant statistical difference between the sheds and the points assessed (P < 0.05). The thermal shed had the lowest values for the environmental variables (Dbt and Bgt) and thermal indices studied, but larger values for the RH compared to the shed with aluminum covering. The use of thermal covers minimizes the difference in temperature range throughout various times of the day, being at 14:00 o'clock the prominence time to others.


Author(s):  
Jiying Liu ◽  
Jelena Srebric ◽  
Nanyang Yu

To analyze urban thermal environments more rapidly and accurately, a real urban morphology is simulated. Two models are proposed to support Reynolds Averaged Navier Stokes (RANS) simulations including: (1) a Zero-equation (ZEQ) turbulence model for outdoor airflows, and (2) convective heat transfer coefficients (CHTC) on external building surfaces. This study used commercial Computational Fluid Dynamics (CFD) software to implement the newly derived ZEQ turbulence model and CHTC wall boundary conditions. This modified version of CFD software was used to predict the thermal environment of an actual urban area including air temperatures and wind velocities. The simulated air velocities around the buildings are compared with the velocities obtained with the standard k-ε (SKE) turbulence model. The air temperatures around the buildings were compared with measured data in the actual outdoor environment. The comparisons show that this simulation method can rapidly and reliably predict a real outdoor thermal environment in an urban area.


2016 ◽  
Vol 8 (2) ◽  
pp. 415-423 ◽  
Author(s):  
Mark L. Carroll ◽  
Molly E. Brown ◽  
Margaret R. Wooten ◽  
Joel E. Donham ◽  
Alfred B. Hubbard ◽  
...  

Abstract. As our climate changes through time there is an ever-increasing need to quantify how and where it is changing so that mitigation strategies can be implemented. Urban areas have a disproportionate amount of warming due, in part, to the conductive properties of concrete and asphalt surfaces, surface albedo, heat capacity, lack of water, etc. that make up an urban environment. The NASA Climate Adaptation Science Investigation working group at Goddard Space Flight Center in Greenbelt, MD, conducted a study to collect temperature and humidity data at 15 min intervals from 12 sites at the center. These sites represent the major surface types at the center: asphalt, building roof, grass field, forest, and rain garden. The data show a strong distinction in the thermal properties of these surfaces at the center and the difference between the average values for the center compared to a local meteorological station. The data have been submitted to Oak Ridge National Laboratory Distributed Active Archive Center (ORNL-DAAC) for archival in comma separated value (csv) file format (Carroll et al., 2016) and can be found by following this link: http://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1319.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1012
Author(s):  
Juan A. Acero ◽  
Elliot J. Y. Koh ◽  
Yon Sun Tan ◽  
Leslie K. Norford

Improving the quality of life in urban areas has become a major concern in the last few decades. With a constantly increasing urban population and in a climate change context, detailed knowledge of the impact of urban elements on the outdoor thermal environment is relevant. In this work, we present the results of several climatic campaigns carried out in Singapore aiming to evaluate local urban climate variables. Sensors were deployed simultaneously in different sites. The effect of building shadowing in the diurnal cycle of mean radiant temperature (Tmrt) is evaluated in different seasons. Although during the Inter-Monsoon season, mean Tmrt reduction due to building shadow is ≈19 °C, during clear skies days, it can be reduced by ≈30 °C. The Tmrt difference between sites is analyzed based on the weather conditions, the sky view factor (SVF), and the type of surrounding urban elements. Under building shadow conditions, higher SVF showed higher Tmrt values, although no correlation was found between Tmrt and diffuse solar radiation (measured above the urban canopy). The results suggest a relevant contribution of other radiation components (e.g., longwave radiation). The quantitative analysis of the Tmrt provided in this work is relevant for outdoor thermal comfort strategies in tropical areas such as Singapore.


Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1708
Author(s):  
Yeon-Moon Choo ◽  
Sang-Bo Sim ◽  
Yeon-Woong Choe

The annual average rainfall in Busan area is increasing, causing frequent flooding of Busan’s Suyeong and Oncheon rivers. Due to the increase in urbanized areas and climate change, it is difficult to reduce flood damage. Therefore, new methods are needed to reduce urban inundation. This study models the effects of three flood reduction methods involving Oncheon River, Suyeong River, and the Hoedong Dam, which is situated on the Suyeong. Using EPA-SWMM, a virtual model of the dam and the rivers was created, then modified with changes to the dam’s height, the installation of a floodgate on the dam, and the creation of an underground waterway to carry excess flow from the Oncheon to the Hoedong Dam. The results of this study show that increasing the height of the dam by 3 m, 4 m, or 6 m led to a 27%, 37%, and 48% reduction in flooding, respectively, on the Suyeong River. It was also found that installing a floodgate of 10 × 4 m, 15 × 4 m, or 20 × 4 min the dam would result in a flood reduction of 2.7% and 2.9%, respectively. Furthermore, the construction of the underground waterway could lead to an expected 25% flood reduction in the Oncheon River. Measures such as these offer the potential to protect the lives and property of citizens in densely populated urban areas and develop sustainable cities and communities. Therefore, the modifications to the dam and the underground waterway proposed in this study are considered to be useful.


Sign in / Sign up

Export Citation Format

Share Document