scholarly journals Spatio-temporal variation of surface soil moisture over the Yellow River basin during 1961–2012

Author(s):  
R. Tong ◽  
X. Yang ◽  
L. Ren ◽  
H. Shen ◽  
H. Shan ◽  
...  

Abstract. Soil moisture plays a significant role in agricultural and ecosystem development. However, in the real world soil moisture data are very limited due to many factors. VIC-3L model, as a semi-distribution hydrological model, can potentially provide valuable information regarding soil moisture. In this study, daily soil moisture contents in the surface soil layer (0–10 cm) of 1500 grids at 0.25 × 0.25 degree were simulated by the VIC-3L model. The Mann-Kendall trend test and Morlet wavelet analysis methods were used for the analysis of annual and monthly average surface soil moisture series. Results showed that the trend of surface soil moisture was not obvious on the basin scale, but it varied with spatial and temporal conditions. Different fluctuation amplitudes and periods of surface soil moisture were also discovered on the Yellow River basin during 1961 to 2012.

2020 ◽  
Vol 12 (3) ◽  
pp. 374 ◽  
Author(s):  
Yanfen Yang ◽  
Jing Wu ◽  
Lei Bai ◽  
Bing Wang

Gridded precipitation products are the potential alternatives in hydrological studies, and the evaluation of their accuracy and potential use is very important for reliable simulations. The objective of this study was to investigate the applicability of gridded precipitation products in the Yellow River Basin of China. Five gridded precipitation products, i.e., Multi-Source Weighted-Ensemble Precipitation (MSWEP), CPC Morphing Technique (CMORPH), Global Satellite Mapping of Precipitation (GSMaP), Tropical Rainfall Measuring Mission (TRMM) Multi-Satellite Precipitation Analysis 3B42, and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks (PERSIANN), were evaluated against observations made during 2001−2014 at daily, monthly, and annual scales. The results showed that MSWEP had a higher correlation and lower percent bias and root mean square error, while CMORPH and GSMaP made overestimations compared to the observations. All the datasets underestimated the frequency of dry days, and overestimated the frequency and the intensity of wet days (0–5 mm/day). MSWEP and TRMM showed consistent interannual variations and spatial patterns while CMORPH and GSMaP had larger discrepancies with the observations. At the sub-basin scale, all the datasets performed poorly in the Beiluo River and Qingjian River, whereas they were applicable in other sub-basins. Based on its superior performance, MSWEP was identified as more suitable for hydrological applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Dan Lou ◽  
Guojie Wang ◽  
Chan Shan ◽  
Daniel Fiifi T. Hagan ◽  
Waheed Ullah ◽  
...  

Soil moisture is a key variable in terrestrial water cycle, playing a key role in the exchange of water and energy in the land-atmosphere interface. The spatiotemporal variations of soil moisture from multiple sources during 1988–2010 are evaluated against in situ observations in the Yellow River basin, China, including the Essential Climate Variable satellite’s passive microwave product (SMECV), ERA-Interim reanalysis (SMERA), the National Centers for Environmental Prediction/Department of Energy’s Reanalysis-2 (SMNCEP), and the Variable Infiltration Capacity model products (SMVIC). The seasonal soil moisture dynamics of SMECV and SMVIC appear to be consistent with SMin  situ, with significant soil drying in spring and wetting in summer. SMERA and SMNCEP, however, fail to capture the soil drying before rainy seasons. Remarkably, SMECV shows large agreement with SMin  situ in terms of the interannual variations and the long-term drying trends. SMVIC captures the interannual variations but fails to have the long-term trends in SMin  situ. As for SMERA and SMNCEP, they fail to capture both the interannual variations and the long-term soil drying trends in SMin  situ.


2011 ◽  
Vol 12 (5) ◽  
pp. 1113-1126 ◽  
Author(s):  
Zhifeng Yang ◽  
Qiang Liu

Abstract Climate changes impact hydrological processes and control streamflow at the basin scale. The present study was conducted to investigate the impact of climate change on streamflow in the Yellow River basin (YRB), China. The temporal trends of streamflow were explored by the Mann–Kendall method and a linear fit model, and the relationships between streamflow, precipitation, and potential evapotranspiration (ETp) were investigated. Furthermore, the contribution of climate changes to streamflow was revealed by Budyko’s method and a simple water balance model. The following results were obtained: (i) decreasing abruptness in streamflow occurred in 1990, and this date was used to divide the streamflow into two periods (baseline period and period of change); (ii) 67 of 80 stations showed decreasing trends with an average reduction of 10.37% of annual precipitation changes, while most of the stations displayed increasing trends with a 3.71% increase in annual ETp; (iii) the precipitation and ETp elasticity of streamflow, as expected, revealed that streamflow increases with increasing precipitation, whereas it decreases with increasing ETp; and (iv) the changes of precipitation and ETp reflected complementary effects on the reduction of streamflow from the baseline period to the period of change, the decreasing trend in precipitation being the main cause for the reduction of streamflow, but the declining rates of ETp causing a slight increase in streamflow.


2019 ◽  
Author(s):  
Ting Hua ◽  
Wenwu Zhao ◽  
Yanxu Liu ◽  
Yue Liu

Abstract. In the Yellow River basin, soil erosion is a significant natural hazard problem, seriously hindering the sustainable development of society. An in-depth assessment of soil erosion and a quantitative identification of the influencing factors are important and fundamental for soil and water conservation. The RUSLE model and geographical detector method were applied to evaluate and identify the dominant factors and spatiotemporal variability in the Yellow River basin. We found that topographical factors such as slope and surface roughness were the dominant factors influencing the spatial distribution of soil erosion in the Yellow River basin, while rainfall and vegetation were as follows. In the period of low rainfall and vegetation coverage, the interaction of rainfall and slope can enhance their impact on the distribution of soil erosion, while the combination of vegetation and slope was the dominant interacting factor in other periods. The dominant driving factors of soil erosion variability were affected by changes in rainfall, but the contribution decreased. The spatial and temporal heterogeneity of soil erosion on a monthly scale was higher, and July had the highest amount of soil erosion with a multi-year average of 12.385 ton/(km²·a). The results provide a better understanding of the relationships between soil erosion and its latent factors in the Yellow River basin. Given the temporal and spatial heterogeneity effects of geographical conditions, especially at the basin scale, policy-makers should form a collaborative environmental governance framework to minimize the risk of soil erosion.


Agriculture ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 58
Author(s):  
Dengyu Yin ◽  
Haochen Yu ◽  
Jing Ma ◽  
Junna Liu ◽  
Gangjun Liu ◽  
...  

The Yellow River Basin (YRB) plays an important role in China’s socioeconomic development and ecological security. From the perspective of recessive land use transition (RLUT), exploring the watershed food security (FS) coordination mechanism is of strategic significance to territorial space optimization and high-quality development. To this end, a coordinated evaluation system was built for analyzing the coupling coordination degree (CCD), spatiotemporal evolution characteristics, and driving mechanism between RLUT and FS of 74 cities in the YRB from 2003 to 2018, using methods such as the coupling coordination degree model, spatial autocorrelation analysis, and the geo-detector model. The results are as follows: (1) Spatial imbalance of RLUT and FS in the YRB is significant. RLUT has significant differences between east and west, and FS has significant differences between north and south. (2) From 2003 to 2018, the CCD between RLUT and FS increased from 0.6028 to 0.6148, maintaining a steady upward trend, and the cold and hot characteristics of spatial agglomeration are significant. (3) The CCD between RLUT and FS depends on population density, average annual temperature, and average elevation. The driving effect of natural factors is higher than the socioeconomic factors on the total basin scale, but the opposite is true on the sub-basin scale. Clarifying the spatiotemporal pattern, characteristics, and mechanism of the coupling and the coordination of RLUT and FS can provide a scientific basis for territorial space planning.


Sign in / Sign up

Export Citation Format

Share Document