scholarly journals Discussion on the origin of surface failures in the Valley of Aguascalientes, México

Author(s):  
M. Hernández-Marín ◽  
N. González-Cervantes ◽  
J. Pacheco-Martínez ◽  
D. H. Frías-Guzmán

Abstract. Surface failures have been observed in the valley of Aguascalientes since the early 1980's. Although, groundwater pumping began in the early 1950's but became intensive until the late 1970's, when many of the surface failures appeared. For this reason, surface deformation (surface failures and land subsidence) has been associated to groundwater withdrawal. Recent observations, however, suggest that some of these surface discontinuities are the result of natural geologic stresses rather than those associated groundwater decline, at least in its origin. Geologically, this valley is a tectonic graben flanked by two north-to-south trending normal faults, and seismicity of low intensity has been detected into the valley evidencing that the study area is seismically active. In this work, we present and discuss evidence showing tectonic discontinuities on the surface or at a shallow depth. Evidence presented in this investigation brings up uncertainty about the purely pumping-induced origin of fissuring in the valley, and allows addressing some key questions, for instance, are the surface failures caused by the combined stresses of pumping and tectonism? Is the current tectonism sufficient to cause some surface or deep failures?

2020 ◽  
Vol 53 (4) ◽  
pp. 609-619 ◽  
Author(s):  
Guang-ya Wang ◽  
Jin-qi Zhu ◽  
Dan Zhang ◽  
Jian-qiang Wu ◽  
Jun Yu ◽  
...  

Wuxi City is located in the Yangtze River Delta region, China and is underlain by a multi-layered aquifer system in porous Quaternary deposits. Groundwater extraction, mainly from the second confined aquifer, has led to severe regional land subsidence. The ground surface started to recover after the restriction and, ultimately, the banning of groundwater pumping. This paper reports the results of long-term surveys, groundwater piezometric head (GPH) measurements and the monitoring of ground surface deformation by levelling and borehole extensometers. The subsidence is attributed to the compression of both the aquifer and aquitards in the porous strata. The spatial characteristics of subsidence are related not only to the distribution of the GPH, but also to the thickness and compressibility of different strata, the distance from the pumped aquifer and the distribution of pumping. There was a temporal lag in subsidence relative to groundwater drawdown. The uplift is related to a period of recovery following the peak pumping period and groundwater recovery subsequent to the restriction and/or banning of groundwater pumping. The uplift was <10 mm under these two conditions, although the GPH recovered to >40% of the previous maximum at the Qianzhou borehole extensometer station.


Author(s):  
C. H. Lu ◽  
C. F. Ni ◽  
C. P. Chang ◽  
J. Y. Yen ◽  
W. C. Hung

Abstract. Choushui River Fluvial Plain (CRFP) is located in the western central Taiwan, where the geomaterials are composed of alluvial deposits. Because the CRFP area receives highly variable rainfall in wet and dry seasons, the groundwater becomes the main resource of residential water. The precise leveling monitoring from 1970s indicated that the coastal areas of CRFP had been threatened by serious pumping-induced land subsidence. On the basis of relatively accurate measurements of precise leveling measurements, we used cokriging technique to incorporate a number of InSAR images to quantify the surface deformation in CRFP. More specifically, the well-developed Persistent Scatterer InSAR (PSI) was employed to process 34 Envisat images (2005–2008) and the results of PSI was then used for improving the spatial resolution of data from precise leveling. The results of cokriging estimation indicate whether the rate or the area of the land subsidence slows down gradually from 2005 to 2008. The subsidence in the northern part of CRFP was influenced by the groundwater decline in aquifer III, and the southern part was influenced by groundwater decline in aquifer II and III. The cokriging estimation was also comparable with continuous GPS data, and their correlation coefficient is 0.9603 and the root mean square is 10.56 mm yr−1.


2019 ◽  
Vol 11 (20) ◽  
pp. 2341 ◽  
Author(s):  
Francesca Cigna ◽  
Deodato Tapete ◽  
Víctor Hugo Garduño-Monroy ◽  
Jesús Arturo Muñiz-Jauregui ◽  
Oscar Humberto García-Hernández ◽  
...  

This paper provides the first wide-area Interferometric Synthetic Aperture Radar (InSAR) survey of the whole eastern Trans-Mexican Volcanic Belt (42,200 km2). The aims are to identify ground deformation hotspots within major urbanized areas and rural valleys, establish baselines in geothermal exploration sites, and analyze deformation at geothermal exploitation sites and its relationship with energy production. The whole 2003–2010 ENVISAT C-band SAR archive available over the region was processed with the Small BAseline Subset (SBAS) InSAR method to retrieve over 840,000 coherent targets and estimate their ground displacement rates and time series. Land subsidence hotspots due to aquifer drawdown are found within the city of Puebla (up to −53 mm/year vertical rates, groundwater pumping for industrial use), Tlaxcala and Apizaco (−17 mm/year, industrial and public), the valley of Tecamachalco (−22 mm/year, agricultural), Tulancingo (−55 mm/year, public, industrial and agricultural), and in the eastern Mexico City metropolitan area (−44 mm/year, agricultural). The baseline for the Acoculco caldera complex shows widespread ground stability. Conversely, localized subsidence patterns of −5 to −10 mm/year exist around Las Derrumbadas and Cerro Pinto in the Serdán-Oriental basin, due to intense groundwater pumping for agriculture. A well-defined land subsidence area with −11 mm/year maximum rates is found at Los Humeros volcanic complex within Los Potreros collapse, correlating well with energy production infrastructure location and historical steam production rates. Field surveys carried out in Acoculco and Los Humeros in 2018 provide supporting evidence for the identification of hydrothermal manifestations, and understanding of the landscape and surface deformation patterns within the geothermal fields.


2020 ◽  
Vol 12 (22) ◽  
pp. 3756
Author(s):  
Wei Shi ◽  
Guan Chen ◽  
Xingmin Meng ◽  
Wanyu Jiang ◽  
Yan Chong ◽  
...  

Land subsidence is one of the major urban geological hazards, which seriously restricts the development of many cities in the world. As one of the major cities in China, Xi’an has also been experiencing a large area of land subsidence due to excessive exploitation of groundwater. Since the Heihe Water Transfer Project (HWTP) became fully operational in late 2003, the problem of subsidence has been restrained, but other issues, such as ground rebounds, have appeared, and the effect of the underground space utilization on land subsidence remains unsolved. The spatial-temporal pattern of land subsidence and rebound in Xi’an after HWTP and their possible cause have so far not been well understood. In this study, the evolutionary characteristics of land subsidence and rebound in Xi’an city from 2007–2019 was investigated using Small Baseline Subset Interferometric Synthetic Aperture Radar (SBAS-SAR) technology to process the Advanced Land Observing Satellite (ALOS) and Sentinel-1A SAR datasets, and their cause and the correlation with groundwater level changes and the underground space utilization were discussed. We found that the land subsidence rate in the study area slowed from 2007–2019, and the subsidence area shrank and gradually developed into three relatively independent and isolated subsidence areas primarily. Significant local rebound deformation up to 22 mm/y commenced in the groundwater recharge region during 2015–2019. The magnitude of local rebound was dominated by the rise in groundwater level due to HWTP, whereas tectonic faults and ground fissures control the range of subsidence and the uplift area. The influence of building load on surface deformation became increasingly evident and primarily manifested by slowing the subsidence reduction trend. Additionally, land subsidence caused by the disturbances during the subway construction period was stronger than that in the operational stage. Future land subsidence in Xi’an is predicted to be alleviated overall, and the areas of rebound deformation will continue increasing for a limited time. However, uneven settlement range may extend to the Qujiang and Xixian New District due to the rapid urban construction. Our results could provide a scientific basis for land subsidence hazard mitigation, underground space planning, and groundwater management in Xi’an or similar regions where severe ground subsidence was induced by rapid urbanization.


1976 ◽  
Vol 66 (6) ◽  
pp. 1921-1929 ◽  
Author(s):  
Tracy L. Johnson ◽  
Juan Madrid ◽  
Theodore Koczynski

abstract Five microearthquake instruments were operated for 2 months in 1974 in a small mobile array deployed at various sites near the Agua Blanca and San Miguel faults. An 80-km-long dection of the San Miguel fault zone is presently active seismically, producing the vast majority of recorded earthquakes. Very low activity was recorded on the Agua Blanca fault. Events were also located near normal faults forming the eastern edge of the Sierra Juarez suggesting that these faults are active. Hypocenters on the San Miguel fault range in depth from 0 to 20 km although two-thirds are in the upper 10 km. A composite focal mechanism showing a mixture of right-lateral and dip slip, east side up, is similar to a solution obtained for the 1956 San Miguel earthquake which proved consistent with observed surface deformation.


2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher A.-L. Jackson

Abstract. Dyke swarms are common on Earth and other planetary bodies, comprising arrays of dykes that can extend for 10's to 1000's of kilometres. The vast extent of such dyke swarms, and their rapid emplacement, means they can significantly influence a variety of planetary processes, including continental break-up, crustal extension, resource accumulation, and volcanism. Determining the mechanisms driving dyke swarm emplacement is thus critical to a range of Earth Science disciplines. However, unravelling dyke swarm emplacement mechanics relies on constraining their 3D structure, which is extremely difficult given we typically cannot access their subsurface geometry at a sufficiently high enough resolution. Here we use high-quality seismic reflection data to identify and examine the 3D geometry of the newly discovered Exmouth Dyke Swarm, and associated structures (i.e. dyke-induced normal faults and pit craters), in unprecedented detail. The latest Jurassic dyke swarm is located on the Gascoyne Margin offshore NW Australia and contains numerous dykes that are > 170 km long, potentially > 500 km long. The mapped dykes are distributed radially across a 39° arc centred on the Cuvier Margin; we infer this focal area marks the source of the dyke swarm, which was likely a mantle plume. We demonstrate seismic reflection data provides unique opportunities to map and quantify dyke swarms in 3D in sedimentary basins, which can allow us to: (i) recognise dyke swarms across continental margins worldwide and incorporate them into models of basin evolution and fluid flow; (ii) test previous models and hypotheses concerning the 3D structure of dyke swarms; (iii) reveal how dyke-induced normal faults and pit craters relate to dyking; and (iv) unravel how dyking translates into surface deformation.


Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 579-606 ◽  
Author(s):  
Craig Magee ◽  
Christopher Aiden-Lee Jackson

Abstract. Dyke swarms are common on Earth and other planetary bodies, comprising arrays of dykes that can extend laterally for tens to thousands of kilometres. The vast extent of such dyke swarms, and their presumed rapid emplacement, means they can significantly influence a variety of planetary processes, including continental break-up, crustal extension, resource accumulation, and volcanism. Determining the mechanisms driving dyke swarm emplacement is thus critical to a range of Earth Science disciplines. However, unravelling dyke swarm emplacement mechanics relies on constraining their 3D structure, which is difficult given we typically cannot access their subsurface geometry at a sufficiently high enough resolution. Here we use high-quality seismic reflection data to identify and examine the 3D geometry of the newly discovered Exmouth Dyke Swarm, and associated structures (i.e. dyke-induced normal faults and pit craters). Dykes are expressed in our seismic reflection data as ∼335–68 m wide, vertical zones of disruption (VZD), in which stratal reflections are dimmed and/or deflected from sub-horizontal. Borehole data reveal one ∼130 m wide VZD corresponds to an ∼18 m thick, mafic dyke, highlighting that the true geometry of the inferred dykes may not be fully captured by their seismic expression. The Late Jurassic dyke swarm is located on the Gascoyne Margin, offshore NW Australia, and contains numerous dykes that extend laterally for > 170 km, potentially up to > 500 km, with spacings typically < 10 km. Although limitations in data quality and resolution restrict mapping of the dykes at depth, our data show that they likely have heights of at least 3.5 km. The mapped dykes are distributed radially across a ∼39∘ wide arc centred on the Cuvier Margin; we infer that this focal area marks the source of the dyke swarm. We demonstrate that seismic reflection data provide unique opportunities to map and quantify dyke swarms in 3D. Because of this, we can now (i) recognise dyke swarms across continental margins worldwide and incorporate them into models of basin evolution and fluid flow, (ii) test previous models and hypotheses concerning the 3D structure of dyke swarms, (iii) reveal how dyke-induced normal faults and pit craters relate to dyking, and (iv) unravel how dyking translates into surface deformation.


2019 ◽  
Vol 11 (14) ◽  
pp. 1673 ◽  
Author(s):  
Qiong Wu ◽  
Chunting Jia ◽  
Shengbo Chen ◽  
Hongqing Li

Yan’an new district (YND) is one of the largest civil engineering projects for land creation in Loess Plateau, of which the amount of earthwork exceeds 600 million m3, to create 78.5 km2 of flat land. Such mega-scale engineering activities and complex geological characteristics have induced wide land deformation in the region. Small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) method and 55 Sentinel-1A (S-1A) images were utilized in the present work to investigate the urban surface deformation in the Yan’an urban area and Yan’an new airport (YNA) from 2015 to 2019. The results were validated by the ground leveling measurements in the YNA. It is found that significant uneven surface deformation existed in both YND and YNA areas with maximum accumulative subsidence of 300 and 217 mm, respectively. Moreover, the average subsidence rate of the YND and YNA areas ranged from −70 to 30 mm/year and −50 to 25 mm/year, respectively. The present work shows that the land deformation suffered two periods (from 2015 to 2017 and from 2017 to 2019) and expanded from urban center to surrounding resettlement area, which are highly relevant with urban earthwork process. It is found that more than 60% of land subsidence occurs at filled areas, while more than 65% of surface uplifting occurs at excavation areas. The present work shows that the subsidence originates from the earth filling and the load of urban buildings, while the release of stress is the major factor for the land uplift. Moreover, it is found that the collapsibility of loess and concentrated precipitation deteriorates the degree of local land subsidence. The deformation discovered by this paper shows that the city may suffer a long period of subsidence, and huge challenges may exist in the period of urban maintaining buildings and infrastructure facilities.


2020 ◽  
Author(s):  
Genger Li ◽  
Guangcai Feng ◽  
Zhiqiang Xiong ◽  
Qi Liu ◽  
Rongan Xie ◽  
...  

Abstract This study monitors the land subsidence of the whole Pearl River Delta (PRD) (area: ~40,000 km2) in China using the ALOS1/PALSAR data (2006-2011) and the SBAS-InSAR method. We also analyze the relationship between the subsidence and the coastline change, river distribution, geological survey data as well as the geomorphology data. The results show that (1) the land subsidence with the average velocity of 50 mm/year occurred in the low elevation area in the front part of the delta and the coastal area; (2) the areas along rivers also suffered from surface subsidence, due to the fragile geological structure and frequent human interference; (3) the geological evolution is the intrinsic factor of the surface subsidence in the PRD, but human interference (reclamation, ground water extraction and urban construction) extend the subsiding area and accelerate the subsiding rate. This study would provide technique supports for the surface deformation and disaster warning in delta regions.


Sign in / Sign up

Export Citation Format

Share Document