scholarly journals Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystalline rock

Solid Earth ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 627-655 ◽  
Author(s):  
Linus Villiger ◽  
Valentin Samuel Gischig ◽  
Joseph Doetsch ◽  
Hannes Krietsch ◽  
Nathan Oliver Dutler ◽  
...  

Abstract. We performed a series of 12 hydraulic stimulation experiments in a 20m×20m×20m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: (i) ductile ones with intense foliation and (ii) brittle–ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydromechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b values, and spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle–ductile shear zones, while the injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided.

2019 ◽  
Author(s):  
Linus Villiger ◽  
Valentin Samuel Gischig ◽  
Joseph Doetsch ◽  
Hannes Krietsch ◽  
Nathan Oliver Dutler ◽  
...  

Abstract. We performed a series of 12 hydraulic stimulation experiments in a 20 × 20 × 20 m foliated, crystalline rock volume intersected by two distinct fault sets at the Grimsel Test Site, Switzerland. The goal of these experiments was to improve our understanding of stimulation processes associated with high-pressure fluid injection used for reservoir creation in enhanced or engineered geothermal systems. In the first six experiments, pre-existing fractures were stimulated to induce shear dilation and enhance permeability. Two types of shear zones were targeted for these hydroshearing experiments: i) ductile ones with intense foliation and ii) brittle-ductile ones associated with a fractured zone. The second series of six stimulations were performed in borehole intervals without natural fractures to initiate and propagate hydraulic fractures that connect the wellbore to the existing fracture network. The same injection protocol was used for all experiments within each stimulation series so that the differences observed will give insights into the effect of geology on the seismo-hydro-mechanical response rather than differences due to the injection protocols. Deformations and fluid pressure were monitored using a dense sensor network in boreholes surrounding the injection locations. Seismicity was recorded with sensitive in-situ acoustic emission sensors both in boreholes and at the tunnel walls. We observed high variability in the seismic response in terms of seismogenic indices, b-values, spatial and temporal evolution during both hydroshearing and hydrofracturing experiments, which we attribute to local geological heterogeneities. Seismicity was most pronounced for injections into the highly conductive brittle-ductile shear zones, while injectivity increase on these structures was only marginal. No significant differences between the seismic response of hydroshearing and hydrofracturing was identified, possibly because the hydrofractures interact with the same pre-existing fracture network that is reactivated during the hydroshearing experiments. Fault slip during the hydroshearing experiments was predominantly aseismic. The results of our hydraulic stimulations indicate that stimulation of short borehole intervals with limited fluid volumes (i.e., the concept of zonal insulation) may be an effective approach to limit induced seismic hazard if highly seismogenic structures can be avoided.


2020 ◽  
Author(s):  
Hannes Krietsch ◽  
Valentin S. Gischig ◽  
Joseph Doetsch ◽  
Keith F. Evans ◽  
Linus Villiger ◽  
...  

Abstract. Six hydraulic shearing experiments have been conducted in the framework of the In-situ Stimulation and Circulation experiment within a decameter-scale crystalline rock volume at the Grimsel Test Site, Switzerland. During each experiment one out of two different shear zone types were hydraulically reactivated. An extensive monitoring system of sensors recording seismicity, pressure and strain was spatially distributed in eleven boreholes around the injection locations. As a result of the stimulation, the near-wellbore transmissivity increased up to three orders in magnitude, while jacking pressures of the stimulated structures reduced during most of the experiments. Transmissivity change, jacking pressure and seismic activity were different for the two shear zone types, suggesting that the shear zone characteristics govern the seismo-hydro-mechanical response. The elevated fracture-fluid-pressures associated with the stimulations propagated mostly along the stimulated shear zones. The absence of high-pressure signals away from the injection point for most experiments (except two out of six experiments) is interpreted as channelized flow within the shear zones. The observed deformation field within 15 m–20 m from the injection point is characterized by variable extensional and compressive strain, produced by fracture normal opening and/or slip dislocation, as well as stress redistribution related to these processes. At greater distance from the injection location, strain measurements indicate a volumetric compressive zone, in which the strain magnitude decreases with increasing distance. This compressive strain signals are interpreted as a poro-elastic far-field response to the emplacement of fluid volume around the injection interval. The exceptional hydro-mechanical data reveal that the overall stimulation effected volume is significantly larger than implied by the seismicity cloud, and can be subdivided into a primary stimulated and secondary effected zone.


Solid Earth ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 1699-1729 ◽  
Author(s):  
Hannes Krietsch ◽  
Valentin S. Gischig ◽  
Joseph Doetsch ◽  
Keith F. Evans ◽  
Linus Villiger ◽  
...  

Abstract. Six hydraulic shearing experiments have been conducted in the framework of the In-situ Stimulation and Circulation experiment within a decameter-scale crystalline rock volume at the Grimsel Test Site, Switzerland. During each experiment fractures associated with one out of two shear zone types were hydraulically reactivated. The two shear zone types differ in terms of tectonic genesis and architecture. An extensive monitoring system of sensors recording seismicity, pressure and strain was spatially distributed in 11 boreholes around the injection locations. As a result of the stimulation, the near-wellbore transmissivity increased up to 3 orders in magnitude. With one exception, jacking pressures were unchanged by the stimulations. Transmissivity change, jacking pressure and seismic activity were different for the two shear zone types, suggesting that the shear zone architectures govern the seismo-hydromechanical response. The elevated fracture fluid pressures associated with the stimulations propagated mostly along the stimulated shear zones. The absence of high-pressure signals away from the injection point for most experiments (except two out of six experiments) is interpreted as channelized flow within the shear zones. The observed deformation field within 15–20 m from the injection point is characterized by variable extensional and compressive strain produced by fracture normal opening and/or slip dislocation, as well as stress redistribution related to these processes. At greater distance from the injection location, strain measurements indicate a volumetric compressive zone, in which strain magnitudes decrease with increasing distance. These compressive strain signals are interpreted as a poro-elastic far-field response to the emplacement of fluid volume around the injection interval. Our hydromechanical data reveal that the overall stimulation effected volume is significantly larger than implied by the seismicity cloud and can be subdivided into a primary stimulated and secondary effected zone.


2020 ◽  
Author(s):  
Kyung Won Chang ◽  
Gungor Beskardes ◽  
Chester Weiss

<p>Hydraulic stimulation is the process of initiating fractures in a target reservoir for subsurface energy resource management with applications in unconventional oil/gas and enhanced geothermal systems. The fracture characteristics (i.e., number, size and orientation with respect to the wellbore) determines the modified permeability field of the host rock and thus, numerical simulations of flow in fractured media are essential for estimating the anticipated change in reservoir productivity. However, numerical modeling of fluid flow in highly fractured media is challenging due to the explosive computational cost imposed by the explicit discretization of fractures at multiple length scales. A common strategy for mitigating this extreme cost is to crudely simplify the geometry of fracture network, thereby neglecting the important contributions made by all elements of the complex fracture system.</p><p>The proposed “Hierarchical Finite Element Method” (Hi-FEM; Weiss, Geophysics, 2017) reduces the comparatively insignificant dimensions of planar- and curvilinear-like features by translating them into integrated hydraulic conductivities, thus enabling cost-effective simulations with requisite solutions at material discontinuities without defining ad-hoc, heuristic, or empirically-estimated boundary conditions between fractures and the surrounding formation. By representing geometrical and geostatistical features of a given fracture network through the Hi-FEM computational framework, geometrically- and geomechanically-dependent fluid flow properly can now be modeled economically both within fractures as well as the surrounding medium, with a natural “physics-informed” coupling between the two.</p><p>SNL is managed and operated by NTESS under DOE NNSA contract DE-NA0003525.</p>


Author(s):  
Linus Villiger ◽  
Valentin Samuel Gischig ◽  
Grzegorz Kwiatek ◽  
Hannes Krietsch ◽  
Joseph Doetsch ◽  
...  

Summary We investigated the induced seismicity, source mechanisms and mechanical responses of a decameter-scale hydraulic stimulation of a pre-existing shear zone in crystalline rock, at the Grimsel Test Site, Switzerland. The analysis reveals the meter-scale complexity of hydraulic stimulation, which remains hidden at the reservoir-scale. High earthquake location accuracy allowed the separation of four distinct clusters, of which three were attributed to the stimulation of fractures in the damage zone of the shear zone. The source mechanism of the larger-magnitude seismicity varied by cluster, and suggests a heterogeneous stress field already prevailing before stimulation, which is further modified during stimulation. In the course of the experiment, stress redistribution led to the aseismic initiation of a tensile-dominated fracture, which induced seismicity in the fourth of the identified seismic clusters. The streaky pattern of seismicity separated by zones without seismicity suggests fluid flow in conduits along existing fracture planes. The observed sub-meter scale complexity questions the forecasting ability of induced seismic hazard at the reservoir scale from small-scale experiments.


2020 ◽  
Author(s):  
Rike Köpke ◽  
Olivier Lengliné ◽  
Jean Schmittbuhl ◽  
Emmanuel Gaucher ◽  
Thomas Kohl

<p>In a geothermal reservoir, seismicity may be induced due to changes in the subsurface as a result of drilling, stimulation or circulation operations. The induced seismic events are therefore strongly linked to the fluid flow, the mechanical state of the reservoir and the geological structures that impact the stress field and make this fluid flow possible. Here, the study is based on the monitoring of the development and operation of the deep geothermal site at Rittershoffen (Alsace, France) using different seismic networks covering various operational periods from September 2012 to present, including the drilling of the well doublet GRT1/GRT2, stimulation of GRT1 and well testing. The seismicity induced by these operations has the potential to give valuable insight into the geomechanical behaviour of the reservoir and the geometry of the fracture network. The present study gives an overview of the spatial and temporal development of the induced seismicity and the magnitudes of the events to provide insights into active structures in the reservoir.</p><p> </p><p>To improve the level of detection, we first apply a template matching algorithm to the continuous waveforms recorded by the seismic networks. After running the detection with the template matching, the relative locations of all detected events are calculated as well as relative magnitudes. This workflow is applied to the whole time period from the start of the drilling in 2012 up to 2017. The spatial and temporal evolution of the events and their magnitudes shows how the different operations during reservoir development influence the seismogenic development of the reservoir and the seismic activity during continuous operation of the site. Further analysis like b-value computation, estimation of the best-fitting planes to the seismic clouds and evaluation of the waveform correlation between the seismic events give insight into the processes that induced the seismicity and the relation between different seismic intervals.</p><p> </p><p>Focus of the present study is on the similarities and differences in the seismic response of the reservoir to the three subsequent stimulations of GRT1, called thermal, chemical and hydraulic stimulation. Results show that the seismicity induced during the hydraulic stimulation is much stronger in terms of seismicity rate and magnitudes than seismicity induced during thermal stimulation and migrates further into the reservoir. Noticeably, after a seismically quiet period of four days after the hydraulic stimulation a short burst of seismicity occurred unrelated to any operations on site. Seismicity during this delayed interval proved to have quite distinct characteristics from the seismicity induced during injection. While no significant seismicity was induced during chemical stimulation, the operation may have had an important influence on the seismic response of the reservoir during hydraulic stimulation by changing the state of the present fracture network.</p>


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5725
Author(s):  
Rafał Moska ◽  
Krzysztof Labus ◽  
Piotr Kasza

Hydraulic fracturing (HF) is a well-known stimulation method used to increase production from conventional and unconventional hydrocarbon reservoirs. In recent years, HF has been widely used in Enhanced Geothermal Systems (EGS). HF in EGS is used to create a geothermal collector in impermeable or poor-permeable hot rocks (HDR) at a depth formation. Artificially created fracture network in the collector allows for force the flow of technological fluid in a loop between at least two wells (injector and producer). Fluid heats up in the collector, then is pumped to the surface. Thermal energy is used to drive turbines generating electricity. This paper is a compilation of selected data from 10 major world’s EGS projects and provides an overview of the basic elements needed to design HF. Authors were focused on two types of data: geological, i.e., stratigraphy, lithology, target zone deposition depth and temperature; geophysical, i.e., the tectonic regime at the site, magnitudes of the principal stresses, elastic parameters of rocks and the seismic velocities. For each of the EGS areas, the scope of work related to HF processes was briefly presented. The most important HF parameters are cited, i.e., fracturing pressure, pumping rate and used fracking fluids and proppants. In a few cases, the dimensions of the modeled or created hydraulic fractures are also provided. Additionally, the current state of the conceptual work of EGS projects in Poland is also briefly presented.


2020 ◽  
Author(s):  
Márk Somogyvári ◽  
Mohammadreza Jalali

<p>Hydraulic stimulation using high-pressure fluid injection has become the common technique for rock mass treatment in various industrial applications such oil & gas, mining and enhanced geothermal system (EGS) development. Hydraulic stimulation is associated with creation of new fractures or dilation of existing fractures that could alter the flow regime in the stimulated reservoir. In this context, it would be beneficiary to understand the dynamic response of the discrete fracture network (DFN) to the stimulation activities rather than comparison between the changes in injectivity and/or transmissivity.</p><p>In this work, a 2-D fully coupled hydro-mechanical model is developed to simulate the dynamic response of a fractured reservoir to hydraulic stimulation. The model calculates stresses, fracture fluid pressure and flow inside the fractures, and modifies the physical properties of the individual fractures given these values. All these alterations will be calculated and applied after each simulation timestep. The results of this synthetic modelling will be used to test the time-lapse pressure tomography approach.</p><p>Pressure tomography will be simulated at multiple timesteps, to capture the hydraulically active fractures within the system. The used tomographic interpretation will be based on the transdimensional DFN inversion, where model parametrization could change over time. With this methodology we can model the newly opened fractures by the stimulation.</p><p>The time-lapse inversion will use the result of the previous timestep as the initial solution for improved efficiency. We test the proposed methodology on outcrop based synthetic 2-D DFN models. The results could capture the changes of permeability (i.e. aperture) as a direct response to hydraulic stimulation.</p>


2020 ◽  
Vol 205 ◽  
pp. 02009
Author(s):  
Catarina Baptista-Pereira ◽  
Bruno Gonçalves da Silva

Enhanced Geothermal Systems have relied on hydraulic fracturing to increase the permeability of rock reservoirs. The permeability enhancement depends on the connectivity between new and existing fractures. This, in turn, depends to a large extent on the interaction between the rock and the fracturing fluid, which not only pressurizes existing and new fractures but also diffuses into the rock matrix. In this research, the effect of the diffusivity of hydraulic oil on the fracturing processes and microseismicity of unconfined prismatic granite specimens was experimentally evaluated using visual and acoustic emission monitoring. The tests consisted of injecting hydraulic oil into two pre-fabricated flaws at two rates (2 ml/min and 20 ml/min), kept constant in each test. The fluid pressure inside the flaws was increased until hydraulic fractures propagated and the fluid front growing from the pre-fabricated flaws was visually monitored throughout the tests. It was observed that the fracturing pressures and patterns were injection-rate-dependent, which shows that diffusivity and poro-elastic effects play an important role in the hydraulic fracturing processes of granite. A smaller fluid front was observed for the 20 ml/min injection rate, associated to a lower volume injected and to a higher fracturing pressure when compared to the 2 ml/min injection rate. This was interpreted to be caused by the different pore pressures that developed inside of the rock matrix, which are function of the fluid front size. Microseismic activity was observed throughout the tests, becoming more intense and localized near the flaws as one approached the end of the test (i.e. visible crack propagation). While microseismic events were observed outside the fluid front region, their density was significantly larger within this area, showing that fluid diffusivity may contribute to an intensification of the microseismic activity.


2021 ◽  
Vol 1 ◽  
pp. 173-174
Author(s):  
Carlos Guevara Morel​​​​​​​ ◽  
Jobst Maßmann ◽  
Jan Thiedau

Abstract. The disposal of heat-generating nuclear waste in deep geological formations is an internationally accepted concept. Several repository systems are under discussion in Germany, whereby claystone, salt or crystalline rock could act as the host rock. In this contribution we focus on repository systems where the Containment Providing Rock Zone (CRZ) ensures safe enclosure of the waste and thus the geologic barrier is essential. Even though the various rock types considered differ substantially in their mechanical, hydraulic, thermal and chemical behavior, they must all meet the same safety requirements as defined by the German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) in 2020. As part of these safety requirements, it must be shown that the integrity of the CRZ is guaranteed for the verification period, i.e. the retention of the properties essential for the containment capacities must be demonstrated over 1 million years. Therefore, the formation of new pathways must be avoided and temperature development must not significantly impair the barrier effect. The anticipated stresses and fluid pressures should not exceed the dilatancy strength and the fluid pressure capacity, respectively. In order to assess the compliance of these requirements, numerical modelling is an essential and powerful tool. Even though great progress has been made regarding the efficiency of computational methods, multiphysical modelling on different length scales over long time periods is still a challenging task. Moreover, since readily available solutions do not exist, adapted methods have to be developed and evaluated, in order to verify concepts and numerical implementations. The BGR gained experience in the field of thermal, hydraulic, mechanical (THM) numerical analysis of the integrity of the CRZ in salt rock and clay stone joined research projects on German disposal options. For crystalline rocks, first concepts are currently being developed within the CHRISTA II project. Compared to clay stone and salt rock, special features have to be taken into account: First of all, crystalline rock is characterized by fractures and other discontinuities. Thus, it cannot be assumed that an undisturbed area of sufficient size can be found for the entire nuclear waste. Consequently, several smaller CRZs must be defined, each providing undisturbed rock. Numerical analysis must deal with smaller CRZs and mechanical and hydraulic boundary conditions that are influenced by fractures. In addition, the processes in the individual CRZs may influence each other (e.g. Temperature distribution). Preliminary modelling approaches and results of numerical THM analyses, considering an upscaled fracture network, are presented.


Sign in / Sign up

Export Citation Format

Share Document