scholarly journals Looking beyond kinematics: 3D thermo-mechanical modelling reveals the dynamic of transform margins

2021 ◽  
Author(s):  
Anthony Jourdon ◽  
Charlie Kergaravat ◽  
Guillaume Duclaux ◽  
Caroline Huguen

Abstract. Transform margins represent ~30 % of the non-convergent margins worldwide. Their formation and evolution have long been addressed through kinematic models that do not account for the mechanical behaviour of the lithosphere. In this study, we use high resolution 3D numerical thermo-mechanical modelling to simulate and investigate the evolution of the intra-continental strain localization under oblique extension. The obliquity is set through velocity boundary conditions that range from 15° (high obliquity) to 75° (low obliquity) every 15° for strong and weak lower continental crust rheologies. Numerical models show that the formation of localized strike-slip shear zones leading to transform continental margins always follows a thinning phase during which the lithosphere is thermally and mechanically weakened. For low (75°) to intermediate (45°) obliquity cases, the strike-slip faults are not parallel to the extension direction but form an angle of 20° to 40° with the plates' motion while for higher obliquities (30° to 15°) the strike-slip faults develop parallel to the extension direction. Numerical models also show that during the thinning of the lithosphere, the stress and strain re-orient while boundary conditions are kept constant. This evolution, due to the weakening of the lithosphere, leads to a strain localization process in three major phases: (1) strain initiates in a rigid plate where structures are sub-perpendicular to the extension direction; (2) distributed deformation with local stress field variations and formation of transtensional and strike-slip structures; (3) formation of highly localized plates boundaries stopping the intra-continental deformation. Our results call for a thorough re-evaluation of the kinematic approach to studying transform margins.

Solid Earth ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 1211-1232
Author(s):  
Anthony Jourdon ◽  
Charlie Kergaravat ◽  
Guillaume Duclaux ◽  
Caroline Huguen

Abstract. Transform margins represent ∼ 30 % of non-convergent margins worldwide. Their formation and evolution have traditionally been addressed through kinematic models that do not account for the mechanical behaviour of the lithosphere. In this study, we use high-resolution 3D numerical thermo-mechanical modelling to simulate and investigate the evolution of intra-continental strain localization under oblique extension. The obliquity is set through velocity boundary conditions that range from 15∘ (high obliquity) to 75∘ (low obliquity) every 15∘ for rheologies of strong and weak lower continental crust. Numerical models show that the formation of localized strike-slip shear zones leading to transform continental margins always follows a thinning phase during which the lithosphere is thermally and mechanically weakened. For low- (75∘) to intermediate-obliquity (45∘) cases, the strike-slip faults are not parallel to the extension direction but form an angle of 20∘ to 40∘ with the plate motion vector, while for higher obliquities (30∘ to 15∘) the strike-slip faults develop parallel to the extension direction. Numerical models also show that during the thinning of the lithosphere, the stress and strain re-orient while boundary conditions are kept constant. This evolution, due to the weakening of the lithosphere, leads to a strain localization process in three major phases: (1) initiation of strain in a rigid plate where structures are sub-perpendicular to the extension direction; (2) distributed deformation with local stress field variations and formation of transtensional and strike-slip structures; (3) formation of highly localized plate boundaries stopping the intra-continental deformation. Our results call for a thorough re-evaluation of the kinematic approach to studying transform margins.


2020 ◽  
Vol 224 (1) ◽  
pp. 608-625
Author(s):  
Lucan Mameri ◽  
Andréa Tommasi ◽  
Javier Signorelli ◽  
Riad Hassani

SUMMARY We propose that strain localization in plate interiors, such as linear belts of intraplate seismicity, may arise from spatial variations in viscous anisotropy produced by preferred orientation of olivine crystals (CPO or texture) inherited from previous deformation episodes in the lithospheric mantle. To quantify this effect, we model the deformation of a plate containing a fossil strike-slip mantle shear zone at different orientations relative to an imposed horizontal shortening, but no initial heterogeneity in the crust. The fossil shear zone is characterized by different orientation and intensity of the olivine CPO relatively to the surrounding mantle, which is isotropic in most simulations. The anisotropy in viscosity produced by the CPO, which remains fixed throughout the simulations, is described by an anisotropic (Hill) yield function parametrized based on second-order viscoplastic self-consistent (SO-VPSC) models. The results indicate that lateral variations in viscous anisotropy in the mantle affect the strain distribution in the entire lithosphere. Reactivation of the strike-slip mantle shear zone and strain localization in the crust above it occur for horizontal compression at 35–55° to the fossil shear plane, with a maximum at 45°. The magnitude of strain localization depends on (i) the contrast in viscous anisotropy and, hence, on the variations in CPO orientation and intensity in the mantle, (ii) the boundary conditions and (iii) the feedbacks between mantle and crustal deformation. For a strong olivine CPO, when the boundary conditions do not hinder shear parallel to the fossil mantle shear zone, strain rates within it are up to a factor 30 higher than in an isotropic surrounding mantle or up to a factor 200 when the surrounding mantle is anisotropic, which results in strain rates up to a factor 10 or up to a factor 100 higher in the crust right above the fossil shear zone. Frictional weakening in the crust faults increases strain localization in the entire lithospheric column. High strength contrasts between the mantle and the ductile crust result in less efficient mechanical coupling, with strong localization in the mantle and lower crust, but weak in the brittle upper crust. Decrease in the crust–mantle strength contrast enhances the coupling and produces more homogenous strain distribution with depth, as well as a time-dependent evolution of strain localization, which reaches a peak and decreases before attaining steady-state. Comparison of seismic anisotropy, regional stress and focal mechanism data in linear arrays of intraplate seismicity, like the New Madrid and South Armorican seismic zones, to our models' predictions corroborates that olivine CPO preserved in fossil lithospheric-scale shear zones may be key for the development of such structures.


2021 ◽  
Vol 16 (59) ◽  
pp. 188-197
Author(s):  
Trung-Kien Nguyen ◽  
Thanh-Trung Vo ◽  
Nhu-Hoang Nguyen

Strain localization is one of key phenomena which have been studied extensively in geomaterials and for different kinds of materials including metals and polymers. This well-known phenomenon appears when structure/material is closed to failure. Theoretical, experimental, and numerical research have been dedicated to this subject for a long while. In the numerical aspects, strain localization inside the periodic granular assembly has not been well studied in the literature. In this paper, we investigate the occurrence and development of strain localization within a dense cohesive-frictional granular assembly with high coordination number under bi-periodic boundary conditions by Discrete Element Modeling (DEM). The granular assembly is composed of 2D circular disks and subjected to biaxial loading with constant lateral pressure. The results show that the formation of shear bands is of periodic type, consistent with the boundary conditions. This formation has the origins of the irreversible losing of cohesive contacts, viewed as micro-crackings which strongly concentrated in the periodic shear zones. This micromechanical feature is therefore strongly related to the strain localization observed at the sample scale. Finally, we also show that the strain localization is in perfect agreement with the sample’s displacement fluctuation fields.


2014 ◽  
Vol 197 (1) ◽  
pp. 50-62 ◽  
Author(s):  
N. Traoré ◽  
L. Le Pourhiet ◽  
J. Frelat ◽  
F. Rolandone ◽  
B. Meyer

2020 ◽  
Vol 57 (1) ◽  
pp. 21-40
Author(s):  
Alexandra Wallenberg ◽  
Michelle Dafov ◽  
David Malone ◽  
John Craddock

A harzburgite intrusion, which is part of the trailside mafic complex) intrudes ~2900-2950 Ma gneisses in the hanging wall of the Laramide Bighorn uplift west of Buffalo, Wyoming. The harzburgite is composed of pristine orthopyroxene (bronzite), clinopyroxene, serpentine after olivine and accessory magnetite-serpentinite seams, and strike-slip striated shear zones. The harzburgite is crosscut by a hydrothermally altered wehrlite dike (N20°E, 90°, 1 meter wide) with no zircons recovered. Zircons from the harzburgite reveal two ages: 1) a younger set that has a concordia upper intercept age of 2908±6 Ma and a weighted mean age of 2909.5±6.1 Ma; and 2) an older set that has a concordia upper intercept age of 2934.1±8.9 Ma and a weighted mean age 2940.5±5.8 Ma. Anisotropy of magnetic susceptibility (AMS) was used as a proxy for magmatic intrusion and the harzburgite preserves a sub-horizontal Kmax fabric (n=18) suggesting lateral intrusion. Alternating Field (AF) demagnetization for the harzburgite yielded a paleopole of 177.7 longitude, -14.4 latitude. The AF paleopole for the wehrlite dike has a vertical (90°) inclination suggesting intrusion at high latitude. The wehrlite dike preserves a Kmax fabric (n=19) that plots along the great circle of the dike and is difficult to interpret. The harzburgite has a two-component magnetization preserved that indicates a younger Cretaceous chemical overprint that may indicate a 90° clockwise vertical axis rotation of the Clear Creek thrust hanging wall, a range-bounding east-directed thrust fault that accommodated uplift of Bighorn Mountains during the Eocene Laramide Orogeny.


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 842
Author(s):  
Kouhei Asano ◽  
Katsuyoshi Michibayashi ◽  
Tomohiro Takebayashi

Deformation microstructures of peak metamorphic conditions in ultrahigh-pressure (UHP) metamorphic rocks constrain the rheological behavior of deeply subducted crustal material within a subduction channel. However, studies of such rocks are limited by the overprinting effects of retrograde metamorphism during exhumation. Here, we present the deformation microstructures and crystallographic-preferred orientation data of minerals in UHP rocks from the Dabie–Shan to study the rheological behavior of deeply subducted continental material under UHP conditions. The studied samples preserve deformation microstructures that formed under UHP conditions and can be distinguished into two types: high-strain mafic–ultramafic samples (eclogite and garnet-clinopyroxenite) and low-strain felsic samples (jadeite quartzite). This distinction suggests that felsic rocks are less strained than mafic–ultramafic rocks under UHP conditions. We argue that the phase transition from quartz to coesite in the felsic rocks may explain the microstructural differences between the studied mafic–ultramafic and felsic rock samples. The presence of coesite, which has a higher strength than quartz, may result in an increase in the bulk strength of felsic rocks, leading to strain localization in nearby mafic–ultramafic rocks. The formation of shear zones associated with strain localization under HP/UHP conditions can induce the detachment of subducted crustal material from subducting lithosphere, which is a prerequisite for the exhumation of UHP rocks. These findings suggest that coesite has an important influence on the rheological behavior of crustal material that is subducted to coesite-stable depths.


2010 ◽  
Vol 37 (4) ◽  
pp. 600-610 ◽  
Author(s):  
Vladan Kuzmanovic ◽  
Ljubodrag Savic ◽  
John Stefanakos

This paper presents two-dimensional (2D) and three-dimensional (3D) numerical models for unsteady phased thermal analysis of RCC dams. The time evolution of a thermal field has been modeled using the actual dam shape, RCC technology and the adequate description of material properties. Model calibration and verification has been done based on the field investigations of the Platanovryssi dam, the highest RCC dam in Europe. The results of a long-term thermal analysis, with actual initial and boundary conditions, have shown a good agreement with the observed temperatures. The influence of relevant parameters on the thermal field of RCC dams has been analyzed. It is concluded that the 2D model is appropriate for the thermal phased analysis, and that the boundary conditions and the mixture properties are the most influential on the RCC dam thermal behavior.


Sign in / Sign up

Export Citation Format

Share Document