scholarly journals Application of soil quality indices to assess the status of agricultural soils irrigated with treated wastewaters

2012 ◽  
Vol 4 (2) ◽  
pp. 1485-1509
Author(s):  
A. Morugán-Coronado ◽  
V. Arcenegui ◽  
F. García-Orenes ◽  
J. Mataix-Solera ◽  
J. Mataix-Beneyto

Abstract. The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships, the equilibrium reached and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. This study was carried out in three areas of Alicante Province (SE Spain) irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.

Solid Earth ◽  
2013 ◽  
Vol 4 (1) ◽  
pp. 119-127 ◽  
Author(s):  
A. Morugán-Coronado ◽  
V. Arcenegui ◽  
F. García-Orenes ◽  
J. Mataix-Solera ◽  
J. Mataix-Beneyto

Abstract. The supply of water is limited in some parts of the Mediterranean region, such as southeastern Spain. The use of treated wastewater for the irrigation of agricultural soils is an alternative to using better-quality water, especially in semi-arid regions. On the other hand, this practice can modify some soil properties, change their relationships and influence soil quality. In this work two soil quality indices were used to evaluate the effects of irrigation with treated wastewater in soils. The indices were developed studying different soil properties in undisturbed soils in SE Spain, and the relationships between soil parameters were established using multiple linear regressions. These indices represent the balance reached among properties in "steady state" soils. This study was carried out in four study sites from SE Spain irrigated with wastewater, including four study sites. The results showed slight changes in some soil properties as a consequence of irrigation with wastewater, the obtained levels not being dangerous for agricultural soils, and in some cases they could be considered as positive from an agronomical point of view. In one of the study sites, and as a consequence of the low quality wastewater used, a relevant increase in soil organic matter content was observed, as well as modifications in most of the soil properties. The application of soil quality indices indicated that all the soils of study sites are in a state of disequilibrium regarding the relationships between properties independent of the type of water used. However, there were no relevant differences in the soil quality indices between soils irrigated with wastewater with respect to their control sites for all except one of the sites, which corresponds to the site where low quality wastewater was used.


2021 ◽  
Author(s):  
Vito Abbruzzese

In many farm systems, both inorganic and organic fertilisers, including manure and slurry, are applied to the soil to replenish nutrient offtake in agricultural products and additional nutrient losses to soil as well as surface water and groundwater. With respect to sole reliance on inorganic fertilisers, the use of manure/slurry as a nutrient resource offers important benefits, including the reuse and recycling of nitrogen (N) and phosphorus (P) within farming systems as well as a reduction in the reliance on agricultural production on finite inorganic fertiliser reserves. There is increasing interest in the extent to which additives can enhance the nutrient value of slurry/manure. However, little is known about the impacts of these amended slurries/manures on the quantity and composition of N and P within agricultural and pasture soils. We report data from incubation experiments in which soils received a range of treatments, including the application of livestock slurry that had received a mixture of commercial additives. Our experiments were designed to understand how slurry that has received additives ultimately affects nutrient availability in organic, clay-loam and sandy-loam grassland soils. The addition of the additives to slurry resulted in a slight increase or no difference in total solids, pH, total N, ammonium-N, total P, total potassium, total magnesium and total sodium compared to the untreated counterpart. We considered the effects of our treatments on a range of agronomically important soil parameters, including Olsen-P, mineral-N, available-K, pH and organic matter content. This experiment aimed to understand the extent to which soil fertility could be enhanced through the application of slurries/manures that have received additives. The application of both amended and unamended slurry treatments on soil led to higher values of NH4-N, available-K, available Mg and pH than the addition of inorganic fertiliser. In addition, no substantial differences were observed between the treatment of the three soils with unamended and amended slurry.


2019 ◽  

<p>Application of municipal sewage sludge (MSS) to agricultural soils is a current practice in EU. European legislation permits its use in agriculture when concentrations of metals in soil do not exceed the maximum permissible limits. In order to study the influence of MSS on cotton yield and soil properties, a filed experiment was conducted in a soil classified as Typic Xerochrepts located in Lamia area, central Greece, for two consecutive years. The experimental design was complete randomized blocks with four treatments: Control (C ), inorganic fertilization (IF), application of 6000 dry kg ha-1 MSS, and 10000 dry SS kg ha-1, each replicated 4 times. The results showed that MSS application in both rates, increased significantly cotton yield compared to control equally to inorganic fertilization. Soil properties, at the end of the second year of MSS application, were significantly affected by MSS application in a positive way i.e. pH decreased slightly, but organic matter content, available phosphorus, total nitrogen concentrations exchangeable potassium and available zinc and copper increased significantly. The potentially toxic elements lead, chromium, and nickel were not significantly affected by MSS application in both application rates compared to control.</p>


2021 ◽  
Author(s):  
Vito Abbruzzese

In many farm systems, both inorganic and organic fertilisers, including manure and slurry, are applied to soil to replenish nutrient offtake in agricultural products and additional nutrient losses to surface water and groundwater. The use of manure/slurry as a nutrient resource offers important advantages over a sole reliance on inorganic fertilisers, including the reuse and recycling of nitrogen (N) and phosphorus (P) within farming systems and a reduction in the reliance of agricultural production on finite inorganic fertiliser reserves. There is increasing interest in the extent to which additives are able to enhance the nutrient value of slurry/manure. However, little is known about the effects of these modified slurries/manures on the quantity and composition of N and P within agricultural soils. We report data from batch soil experiments in which soils received a range of treatments, including the application of livestock slurry that had received a combined SlurryBugs™ and SlurryBooster™ additive. Past research has shown that SlurryBugs™ and SlurryBooster™ additives have a range of potentially beneficial effects on livestock slurry, including increased total N content of the slurry. Our experiments were designed to understand how slurry that has received additives ultimately affects nutrient availability in organic, clay-loam and sandy-loam grassland soils. We consider the effects of our treatments on a range of agronomically-important soil parameters, including Olsen-P, mineral-N, available-K, pH and organic matter content. Through our experiments, we aim to understand the extent to which soil fertility can be enhanced through the application of slurries/manures that have received additives.


2017 ◽  
Vol 78 (1) ◽  
pp. 39-44 ◽  
Author(s):  
Ewa Błońska ◽  
Jarosław Lasota ◽  
Maciej Zwydak

Abstract The aim of this study was to assess the effects of different types of land use (forest, tillage and pasture) on soil properties, especially enzyme activity. Our investigation was carried out on 53 research plots with 11 plots in broadleaved forest stands, 12 plots in mixed broadleaved stands, 10 plots in mixed coniferous stands, 9 plots on tillage and 11 plots on pasture. The soil samples were collected from a depth of 0–15 cm after removing the organic horizon. Contents of organic carbon and nitrogen, pH and soil texture were investigated. Furthermore, dehydrogenase and urease activity were determined. Significant differences in the enzyme activity between forest and agricultural soils were observed, thus demonstrating that enzyme activity is influenced by the organic matter content of the soil. The highest enzyme activity was recorded in the forest soil within broadleaved stands, whilst the lowest activity was found in tillage soil, because tillage soil contained significantly less organic matter. High enzymatic activity of pasture soils is the combined result of vegetation type and the lack of plowing.


2015 ◽  
Vol 5 ◽  
Author(s):  
Alicia Morugán-Coronado ◽  
Fuensanta García-Orenes ◽  
Artemi Cerdà

Agricultural land management greatly affects soil properties. Microbial soil communities are the most sensitive and rapid indicators of perturbations in land use and soil enzyme activities are sensitive biological indicators of the effects of soil management practices. Citrus orchards frequently have degraded soils and this paper evaluates how land management in citrus orchards can improve soil quality. A field experiment was performed in an orchard of orange trees (<em>Citrus Sinensis</em>) in the Alcoleja Experimental Station (Eastern Spain) with clay-loam agricultural soils to assess the long-term effects of herbicides with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (P) and organic farming (O) on the soil microbial properties, and to study the relationship between them. Nine soil samples were taken from each agricultural management plot. In all the samples physicochemical parameters, basal soil respiration, soil microbial biomass carbon, microbial indexes (BSR/C, Cmic/C and BSR/Cmic) and enzymatic activities (urease, dehydrogenase, ß-glucosidase and acid phosphatase) were determined. The results showed significant differences between the different agricultural management practices for the microbial properties and soil microbial indexes, since these were strongly associated with the soil organic matter content. Unlike herbicide use and intensive ploughing  - management practices that both showed similar microbial soil properties -  the organic management practices contributed to an increase in the soil biology quality, aggregate stability and organic matter content.


AGROFOR ◽  
2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Maria KOKKORA ◽  
Michael VRAHNAKIS ◽  
Vassiliki KLEFTOYANNI

Agroforestry is considered a sustainable cultivating methodology in comparison to intensified and one-dimension agriculture, resulting in higher yields, socioeconomic benefits and environmental protection as well. The silvoarable systems constitute classification of the agroforestry systems that involve crops and trees in the same spatiotemporal scales. One of the most important benefits related to the productivity of silvoarable systems is the maintenance or improvement of soil quality. In the present study, qualitative characteristics of soils in traditional silvoarable systems in the area of Mouzaki, central Greece, were studied through the determination of basic soil parameters, including the organic matter content, total nitrogen, exchangeable potassium and available phosphorus. All systems under investigation were characterised as boundary hedgerows (livefences). The trees in the hedgerows may include mulberry, wild pear, wild walnut, and other wild tree types typical of the Mouzaki landscape, whereas the understorey crops were both arable and horticultural. Within the research areas, the effect of the trees on the concentration of the selected soil parameters was investigated. Soil samples were collected in all systems at two depths (0-30 and 30-60 cm) and at three distances from the selected trees, corresponding to half, twice, triple or quadruple the tree canopy width. The results of the research provided evidence of C sequestration in all soils under investigation, thus indicating the positive effect of agroforestry systems on the environment.


Author(s):  
Amita M Watkar ◽  

Soil, itself means Soul of Infinite Life. Soil is the naturally occurring unconsolidated or loose covering on the earth’s surface. Physical properties depend upon the amount, size, shape, arrangement, and mineral composition of soil particles. It also depends on the organic matter content and pore spaces. Chemical properties depend on the Inorganic and organic matter present in the soil. Soils are the essential components of the environment and foundation resources for nearly all types of land use, besides being the most important component of sustainable agriculture. Therefore, assessment of soil quality and its direction of change with time is an ideal and primary indicator of sustainable agricultural land management. Soil quality indicators refer to measurable soil attributes that influence the capacity of a soil to function, within the limits imposed by the ecosystem, to preserve biological productivity and environmental quality and promote plant, animal and human health. The present study is to assess these soil attributes such as physical and chemical properties season-wise.


Author(s):  
Daniela Ciccarelli ◽  
Cleusa Bona

AbstractCoastal dunes are characterised by strong interactions between biotic and abiotic factors along a short gradient from the shoreline to the inland region. We carried out an ecological analysis of the vegetation in a protected area of the Italian coast to evaluate the relationships among species abundance, the occurrence of morphoanatomical traits related to leaves, stems, and roots, and soil variables. Three transects were established perpendicular to the shoreline, with 27 plots distributed in the frontal dunes, backdunes, and temporarily wet dune slacks. An analysis based on community-weighted mean values showed that the pioneer communities of the frontal dunes were dominated by ruderals that are well adapted to the harsh ecological conditions of these environments, showing succulent leaves, high limb thickness values, and low values for leaf dry matter content (LDMC). The backdune vegetation was a mosaic of annual herbaceous and perennial shrub communities showing both ruderal and stress-tolerant strategies (clonality, sclerified leaves, high LDMC values, root phenolics) consistent with less extreme ecological conditions. The dune slack areas were dominated by plants showing adaptations to both arid and flooded environments, such as C4 photosynthesis, amphistomatic leaves, and abundant aerenchyma in the roots. The invasive status, C4 photosynthesis, leaf trichomes, and aerenchyma in the roots were significantly correlated with soil humidity, organic matter content, and pH. These results demonstrate the usefulness of anatomical traits (including root system traits) in understanding the functional strategies adopted by plants. Invasive species tended to occupy plots with high levels of soil moisture, suggesting an avoidance strategy for the harsh environmental conditions of coastal sand dunes. Finally, we suggest including information regarding root systems into coastal monitoring programs because they are directly linked to soil parameters useful in coastal dune management and protection.


2021 ◽  
Vol 11 (10) ◽  
pp. 4663
Author(s):  
Raquel Cela-Dablanca ◽  
Carolina Nebot ◽  
Lucia Rodríguez López ◽  
David Ferández-Calviño ◽  
Manuel Arias-Estévez ◽  
...  

Antibiotics in wastewater, sewage sludge, manures, and slurries constitute a risk for the environment when spread on soils. This work studies the adsorption and desorption of the antibiotic cefuroxime (CFX) in 23 agricultural and forest soils, using batch-type experiments. Our results show that the adsorption values were between 40.75 and 99.57% in the agricultural soils, while the range was lower (from 74.57 to 93.46%) in forest soils. Among the Freundlich, Langmuir, and Linear models, the Freundlich equation shows the best fit for the adsorption results. In addition, agricultural soils with higher pH are the ones that present the highest adsorption. Further confirmation of the influence of pH on adsorption is given by the fact that Freundlich’s KF parameter and the Linear model Kd parameter shows a positive correlation with pH and with the exchangeable Ca and Mg values, which are known to affect the charges of the soil colloids and the formation of cationic bridges between adsorbents and adsorbate. In addition, Freundlich’s n parameter shows a positive and significant correlation with the organic matter content, related to the high adsorption taking place on forest soils despite their pH < 5. Regarding desorption, in most cases, it is lower than 1%, which indicates that CFX is adsorbed in a rather irreversible way onto these soils. Overall, these results can be considered relevant regarding their potential impact on environmental quality and public health.


Sign in / Sign up

Export Citation Format

Share Document