scholarly journals MODIS NDVI and vegetation phenology dynamics in the Inner Mongolia grassland

2015 ◽  
Vol 7 (3) ◽  
pp. 2381-2411 ◽  
Author(s):  
Z. Gong ◽  
K. Kawamura ◽  
N. Ishikawa ◽  
M. Goto ◽  
T. Wulan ◽  
...  

Abstract. The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002–2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002–2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation (February–May) and increasing temperature during the growing period because of the global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.


Solid Earth ◽  
2015 ◽  
Vol 6 (4) ◽  
pp. 1185-1194 ◽  
Author(s):  
Z. Gong ◽  
K. Kawamura ◽  
N. Ishikawa ◽  
M. Goto ◽  
T. Wulan ◽  
...  

Abstract. The Inner Mongolia grassland, one of the most important grazing regions in China, has long been threatened by land degradation and desertification, mainly due to overgrazing. To understand vegetation responses over the last decade, this study evaluated trends in vegetation cover and phenology dynamics in the Inner Mongolia grassland by applying a normalized difference vegetation index (NDVI) time series obtained by the Terra Moderate Resolution Imaging Spectroradiometer (MODIS) during 2002–2014. The results showed that the cumulative annual NDVI increased to over 77.10 % in the permanent grassland region (2002–2014). The mean value of the total change showed that the start of season (SOS) date and the peak vegetation productivity date of the season (POS) had advanced by 5.79 and 2.43 days, respectively. The end of season (EOS) was delayed by 5.07 days. These changes lengthened the season by 10.86 days. Our results also confirmed that grassland changes are closely related to spring precipitation and increasing temperature at the early growing period because of global warming. Overall, productivity in the Inner Mongolia Autonomous Region tends to increase, but in some grassland areas with grazing, land degradation is ongoing.



Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3676 ◽  
Author(s):  
Hao Chen ◽  
Xiangnan Liu ◽  
Chao Ding ◽  
Fang Huang

Land degradation is a widespread environmental issue and an important factor in limiting sustainability. In this study, we aimed to improve the accuracy of monitoring human-induced land degradation by using phenological signal detection and residual trend analysis (RESTREND). We proposed an improved model for assessing land degradation named phenology-based RESTREND (P-RESTREND). This method quantifies the influence of precipitation on normalized difference vegetation index (NDVI) variation by using the bivariate linear regression between NDVI and precipitation in pre-growing season and growing season. The performances of RESTREND and P-RESTREND for discriminating land degradation caused by climate and human activities were compared based on vegetation-precipitation relationship. The test area is in Western Songnen Plain, Northeast China. It is a typical region with a large area of degraded drylands. The MODIS 8-day composite reflectance product and daily precipitation data during 2000–2015 were used. Our results showed that P-RESTREND was more effective in distinguishing different drivers of land degradation than the RESTREND. Degraded areas in the Songnen grasslands can be effectively detected by P-RESTREND. Therefore, this modified model can be regarded as a practical method for assessing human-induced land degradation.



Author(s):  
X. Yan ◽  
J. Li ◽  
Z. Yang

Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage(FVC)in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.



2021 ◽  
Vol 13 (13) ◽  
pp. 2554
Author(s):  
David K. Swanson

Daily Normalized Difference Vegetation Index (NDVI) values from the MODIS Aqua and Terra satellites were compared with on-the-ground camera observations at five locations in northern Alaska. Over half of the spring rise in NDVI was due to the transition from the snow-covered landscape to the snow-free surface prior to the deciduous leaf-out. In the fall after the green season, NDVI fluctuated between an intermediate level representing senesced vegetation and lower values representing clouds and intermittent snow, and then dropped to constant low levels after establishment of the permanent winter snow cover. The NDVI value of snow-free surfaces after fall leaf senescence was estimated from multi-year data using a 90th percentile smoothing spline curve fit to a plot of daily NDVI values vs. ordinal date. This curve typically showed a flat region of intermediate NDVI values in the fall that represent cloud- and snow-free days with senesced vegetation. This “fall plateau” was readily identified in a large systematic sample of MODIS NDVI values across the study area, in typical tundra, shrub, and boreal forest environments. The NDVI level of the fall plateau can be extrapolated to the spring rising leg of the annual NDVI curve to approximate the true start of green season.



2015 ◽  
Vol 12 (23) ◽  
pp. 7185-7208 ◽  
Author(s):  
N. MacBean ◽  
F. Maignan ◽  
P. Peylin ◽  
C. Bacour ◽  
F.-M. Bréon ◽  
...  

Abstract. Correct representation of seasonal leaf dynamics is crucial for terrestrial biosphere models (TBMs), but many such models cannot accurately reproduce observations of leaf onset and senescence. Here we optimised the phenology-related parameters of the ORCHIDEE TBM using satellite-derived Normalized Difference Vegetation Index data (MODIS NDVI v5) that are linearly related to the model fAPAR. We found the misfit between the observations and the model decreased after optimisation for all boreal and temperate deciduous plant functional types, primarily due to an earlier onset of leaf senescence. The model bias was only partially reduced for tropical deciduous trees and no improvement was seen for natural C4 grasses. Spatial validation demonstrated the generality of the posterior parameters for use in global simulations, with an increase in global median correlation of 0.56 to 0.67. The simulated global mean annual gross primary productivity (GPP) decreased by ~ 10 PgC yr−1 over the 1990–2010 period due to the substantially shortened growing season length (GSL – by up to 30 days in the Northern Hemisphere), thus reducing the positive bias and improving the seasonal dynamics of ORCHIDEE compared to independent data-based estimates. Finally, the optimisations led to changes in the strength and location of the trends in the simulated vegetation productivity as represented by the GSL and mean annual fraction of absorbed photosynthetically active radiation (fAPAR), suggesting care should be taken when using un-calibrated models in attribution studies. We suggest that the framework presented here can be applied for improving the phenology of all global TBMs.



2015 ◽  
Vol 12 (14) ◽  
pp. 4407-4419 ◽  
Author(s):  
J. L. Olsen ◽  
S. Miehe ◽  
P. Ceccato ◽  
R. Fensholt

Abstract. Most regional scale studies of vegetation in the Sahel have been based on Earth observation (EO) imagery due to the limited number of sites providing continuous and long term in situ meteorological and vegetation measurements. From a long time series of coarse resolution normalized difference vegetation index (NDVI) data a greening of the Sahel since the 1980s has been identified. However, it is poorly understood how commonly applied remote sensing techniques reflect the influence of extensive grazing (and changes in grazing pressure) on natural rangeland vegetation. This paper analyses the time series of Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI metrics by comparing it with data from the Widou Thiengoly test site in northern Senegal. Field data include grazing intensity, end of season standing biomass (ESSB) and species composition from sizeable areas suitable for comparison with moderate – coarse resolution satellite imagery. It is shown that sampling plots excluded from grazing have a different species composition characterized by a longer growth cycle as compared to plots under controlled grazing or communal grazing. Also substantially higher ESSB is observed for grazing exclosures as compared to grazed areas, substantially exceeding the amount of biomass expected to be ingested by livestock for this area. The seasonal integrated NDVI (NDVI small integral; capturing only the signal inherent to the growing season recurrent vegetation), derived using absolute thresholds to estimate start and end of growing seasons, is identified as the metric most strongly related to ESSB for all grazing regimes. However plot-pixel comparisons demonstrate how the NDVI/ESSB relationship changes due to grazing-induced variation in annual plant species composition and the NDVI values for grazed plots are only slightly lower than the values observed for the ungrazed plots. Hence, average ESSB in ungrazed plots since 2000 was 0.93 t ha−1, compared to 0.51 t ha−1 for plots subjected to controlled grazing and 0.49 t ha−1 for communally grazed plots, but the average integrated NDVI values for the same period were 1.56, 1.49, and 1.45 for ungrazed, controlled and communal, respectively, i.e. a much smaller difference. This indicates that a grazing-induced development towards less ESSB and shorter-cycled annual plants with reduced ability to turn additional water in wet years into biomass is not adequately captured by seasonal NDVI metrics.



2021 ◽  
pp. 912-926
Author(s):  
Fadel Abbas Zwain ◽  
Thair Thamer Al-Samarrai ◽  
Younus I. Al-Saady

Iraq territory as a whole and south of Iraq in particular encountered rapid desertification and signs of severe land degradation in the last decades. Both natural and anthropogenic factors are responsible for the extent of desertification. Remote sensing data and image analysis tools were employed to identify, detect, and monitor desertification in Basra governorate. Different remote sensing indicators and image indices were applied in order to better identify the desertification development in the study area, including the Normalized difference vegetation index (NDVI), Normalized Difference Water Index (NDWI), Salinity index (SI), Top Soil Grain Size Index (GSI) , Land Surface Temperature (LST) , Land Surface Soil Moisture (LSM), and Land Degradation Risk Index (LDI) which was used for the assessment of degradation severity .Three Landsat images, acquired in 1973, 1993, and 2013, were used to evaluate the potential of using remote sensing analysis in desertification monitoring. The approach applied in this study for evaluating this phenomenon was proven to be an effective tool for the recognition of areas at risk of desertification. The results indicated that the arid zone of Basra governorate encounters substantial changes in the environment, such as decreasing surface water, degradation of agricultural lands (as palm orchards and crops), and deterioration of marshlands. Additional changes include increased salinization with the creeping of sand dunes to agricultural areas, as well as the impacts of oil fields and other facilities.





2020 ◽  
Vol 12 (8) ◽  
pp. 1332 ◽  
Author(s):  
Linghui Guo ◽  
Liyuan Zuo ◽  
Jiangbo Gao ◽  
Yuan Jiang ◽  
Yongling Zhang ◽  
...  

An understanding of the response of interannual vegetation variations to climate change is critical for the future projection of ecosystem processes and developing effective coping strategies. In this study, the spatial pattern of interannual variability in the growing season normalized difference vegetation index (NDVI) for different biomes and its relationships with climate variables were investigated in Inner Mongolia during 1982–2015 by jointly using linear regression, geographical detector, and geographically weighted regression methodologies. The result showed that the greatest variability of the growing season NDVI occurred in typical steppe and desert steppe, with forest and desert most stable. The interannual variability of NDVI differed monthly among biomes, showing a time gradient of the largest variation from northeast to southwest. NDVI interannual variability was significantly related to that of the corresponding temperature and precipitation for each biome, characterized by an obvious spatial heterogeneity and time lag effect marked in the later period of the growing season. Additionally, the large slope of NDVI variation to temperature for desert implied that desert tended to amplify temperature variations, whereas other biomes displayed a capacity to buffer climate fluctuations. These findings highlight the relationships between vegetation variability and climate variability, which could be used to support the adaptive management of vegetation resources in the context of climate change.



Fire ◽  
2018 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Níckolas Santana

Fire is one of the main modeling agents of savanna ecosystems, affecting their distribution, physiognomy and species diversity. Changes in the natural fire regime on savannas cause disturbances in the structural characteristics of vegetation. Theses disturbances can be effectively monitored by time series of remote sensing data in different terrestrial ecosystems such as savannas. This study used trend analysis in NDVI (Normalized Difference Vegetation Index)–MODIS (Moderate Resolution Imaging Spectroradiometer) time series to evaluate the influence of different fire recurrences on vegetation phenology of the Brazilian savanna in the period from 2001 to 2016. The trend analysis indicated several factors responsible for changes in vegetation: (a) The absence of fire in savanna phytophysiognomies causes a constant increase in MODIS–NDVI, ranging from 0.001 to 0.002 per year, the moderate presence of fire in these areas does not cause significant changes, while the high recurrence results in decreases of MODIS–NDVI, ranging from −0.002 to −0.008 per year; (b) Forest areas showed a high decrease in NDVI, reaching up to −0.009 MODIS–NDVI per year, but not related to fire recurrence, indicating the high degradation of these phytophysiognomies; (c) Changes in vegetation are highly connected to the protection status of the area, such as areas of integral protection or sustainable use, and consequently their conservation status. Areas with greater vegetation conservation had more than 70% of positive changes in pixels with significant tendencies. Absence or presence of fire are the main agents of vegetation change in areas with lower anthropic influence. These results reinforce the need for a suitable fire management policy for the different types of Cerrado phytophysiognomies, in addition to highlighting the efficiency of remote sensing time series for evaluation of vegetation phenology.



Sign in / Sign up

Export Citation Format

Share Document