scholarly journals High-temperature metamorphism during extreme thinning of the continental crust: a reappraisal of the north Pyrenean paleo-passive margin

2015 ◽  
Vol 7 (1) ◽  
pp. 797-857 ◽  
Author(s):  
C. Clerc ◽  
A. Lahfid ◽  
P. Monié ◽  
Y. Lagabrielle ◽  
C. Chopin ◽  
...  

Abstract. An increasing number of field examples in mountain belts show that the formation of passive margins during extreme continent thinning may occur under conditions of high to very high thermal gradient beneath a thin cover of syn-rift sediments. Orogenic belts resulting from the tectonic inversion of distal margins and regions of exhumed continental mantle may exhibit high-temperature, low-pressure (HT-LP) metamorphism and coeval syn-extensional, ductile deformation. Recent studies have shown that the northern flank of the Pyrenean belt, especially the North Pyrenean Zone, is one of the best examples of such inverted hot, passive margin. In this study, we provide a map of HT-LP metamorphism based on a dataset of more than one hundred peak-temperature estimates obtained using Raman spectroscopy of the carbonaceous material (RSCM). This dataset is completed by previous PT estimates based on mineral assemblages, and new Ar–Ar (amphibole, micas) and U–Pb (titanite) ages from metamorphic and magmatic rocks of the North Pyrenean Zone. The implications on the geological evolution of the Cretaceous Pyrenean paleomargins are discussed. Ages range mainly from 110 to 90 Ma and no westward or eastward propagation of the metamorphism and magmatism can be clearly identified. In contrast, the new data reveal a progressive propagation of the thermal anomaly from the base to the surface of the continental crust. Focusing on the key-localities of the Mauléon Basin, Arguenos-Moncaup, Lherz, Boucheville and the Bas-Agly, we analyse the thermal conditions prevailing during the Cretaceous crustal thinning. The results are synthetized into a series of three regional thematic maps, and into two detailed maps of the Arguenos-Moncaup and Lherz areas. The results indicate a first-order control of the thermal gradient by the intensity of crustal thinning. The highest grades of metamorphism are intimately associated with the areas where subcontinental mantle rocks have been unroofed or exhumed.

Solid Earth ◽  
2015 ◽  
Vol 6 (2) ◽  
pp. 643-668 ◽  
Author(s):  
C. Clerc ◽  
A. Lahfid ◽  
P. Monié ◽  
Y. Lagabrielle ◽  
C. Chopin ◽  
...  

Abstract. An increasing number of field examples in mountain belts show that the formation of passive margins during extreme continent thinning may occur under conditions of high to very high thermal gradient beneath a thin cover of syn-rift sediments. Orogenic belts resulting from the tectonic inversion of distal margins and regions of exhumed continental mantle may exhibit high-temperature, low-pressure (HT-LP) metamorphism and coeval syn-extensional, ductile deformation. Recent studies have shown that the northern flank of the Pyrenean belt, especially the North Pyrenean Zone, is one of the best examples of such inverted hot, passive margin. In this study, we provide a map of HT-LP metamorphism based on a data set of more than 100 peak-temperature estimates obtained using Raman spectroscopy of the carbonaceous material (RSCM). This data set is completed by previous PT (pressure and temperature) estimates based on mineral assemblages, and new 40Ar–39Ar (amphibole, micas) and U–Pb (titanite) ages from metamorphic and magmatic rocks of the North Pyrenean Zone. The implications on the geological evolution of the Cretaceous Pyrenean paleomargins are discussed. Ages range mainly from 110 to 90 Ma, and no westward or eastward propagation of the metamorphism and magmatism can be clearly identified. In contrast, the new data reveal a progressive propagation of the thermal anomaly from the base to the surface of the continental crust. Focusing on the key localities of the Mauléon basin, Arguenos–Moncaup, Lherz, Boucheville and the Bas-Agly, we analyze the thermal conditions prevailing during the Cretaceous crustal thinning. The results are synthetized into a series of three regional thematic maps and into two detailed maps of the Arguenos–Moncaup and Lherz areas. The results indicate a first-order control of the thermal gradient by the intensity of crustal thinning. The highest grades of metamorphism are intimately associated with the areas where subcontinental mantle rocks have been unroofed or exhumed.


Geosphere ◽  
2021 ◽  
Author(s):  
Robert Fox ◽  
Michael P. Searle

During the Caledonian orogeny, the Moine thrust zone in northwestern Scotland (UK) emplaced Neoproterozoic Moine Supergroup rocks, metamorphosed during the Ordovician (Grampian) and Silurian (Scandian) orogenic periods, westward over the Laurentian passive margin in the northern highlands of Scotland. The Laurentian margin comprises Archean–Paleoproterozoic granulite and amphibolite facies basement (Scourian and Laxfordian complexes, Lewisian gneiss), Proterozoic sedimentary rocks (Stoer and Torridon Groups), and Cambrian–Ordovician passive-margin sediments. Four major thrusts, the Moine, Ben More, Glencoul, and Sole thrusts, are well exposed in the Assynt window. Two highly alkaline syenite intrusions crop out within the Moine thrust zone in the southern Assynt window. The Loch Ailsh and Loch Borralan intrusions range from ultramafic melanite-biotite pyroxenite and pseudoleucite-bearing biotite nepheline syenite (borolanite) to alkali-feldspar–bearing and quartz-bearing syenites. Within the thrust zone, syenites intrude up to the Ordovician Durness Group limestones and dolomites, forming a high-temperature contact metamorphic aureole with diopside-forsterite-phlogopite-brucite marbles exposed at Ledbeg quarry. Controversy remains as to whether the Loch Ailsh and Loch Borralan syenites were intruded prior to thrusting or intruded syn- or post-thrusting. Borolanites contain large white leucite crystals pseudomorphed by alkali feldspar, muscovite, and nepheline (pseudoleucite) that have been flattened and elongated during ductile shearing. The minerals pseudomorphing leucites show signs of ductile deformation indicating that high-temperature (~500 °C) deformation acted upon pseudomorphed leucite crystals that had previously undergone subsolidus breakdown. New detailed field mapping and structural and petrological observations are used to constrain the geological evolution of both the Loch Ailsh and the Loch Borralan intrusions and the chronology of the Moine thrust zone. The data supports the interpretation that both syenite bodies were intruded immediately prior to thrusting along the Moine, Ben More, and Borralan thrusts.


2021 ◽  
Vol 13 (10) ◽  
pp. 1934
Author(s):  
Soha Hassan ◽  
Mohamed Sultan ◽  
Mohamed Sobh ◽  
Mohamed S. Elhebiry ◽  
Khaled Zahran ◽  
...  

Interpretations of the tectonic setting of the Nile Delta of Egypt and its offshore extension are challenged by the thick sedimentary cover that conceals the underlying structures and by the paucity of deep seismic data and boreholes. A crustal thickness model, constrained by available seismic and geological data, was constructed for the Nile Delta by inversion of satellite gravity data (GOCO06s), and a two-dimensional (2D) forward density model was generated along the Delta’s entire length. Modelling results reveal the following: (1) the Nile Delta is formed of two distinctive crustal units: the Southern Delta Block (SDB) and the Northern Delta Basin (NDB) separated by a hinge zone, a feature widely reported from passive margin settings; (2) the SDB is characterized by an east–west-trending low-gravity (~−40 mGal) anomaly indicative of continental crust characteristics (depth to Moho (DTM): 36–38 km); (3) the NDB and its offshore extension are characterized by high gravity anomalies (hinge zone: ~10 mGal; Delta shore line: >40 mGal; south Herodotus Basin: ~140 mGal) that are here attributed to crustal thinning and stretching and decrease in DTM, which is ~35 km at the hinge zone, 30–32 km at the shoreline, and 22–20 km south of the Herodotus Basin; and (4) an apparent continuation of the east-northeast–west-southwest transitional crust of the Nile Delta towards the north-northeast–south-southwest-trending Levant margin in the east. These observations together with the reported extensional tectonics along the hinge zone, NDB and its offshore, the low to moderate seismic activity, and the absence of volcanic eruptions in the Nile Delta are all consistent with the NDB being a non-volcanic passive margin transition zone between the North African continental crust (SDB) and the Mediterranean oceanic crust (Herodotus Basin), with the NDB representing a westward extension of the Levant margin extensional transition zone.


2006 ◽  
Vol 143 (1) ◽  
pp. 59-88 ◽  
Author(s):  
K. SAALMANN ◽  
M. V. D. REMUS ◽  
L. A. HARTMANN

The SW–NE-striking Porongos belt, located between juvenile Neoproterozoic rocks in the west and the Dom Feliciano belt, characterized by intense reworking of older crust, in the east, comprises a greenschist to amphibolite-facies metavolcano-metasedimentary succession (Porongos sequence) of unknown age with some exposures of Palaeoproterozoic gneisses (Encantadas gneisses). High-temperature ductile deformation of the basement gneisses comprises at least two magmatic events followed by three deformational phases including folding and shearing (DT1–DT3) and can be attributed to the Palaeoproterozoic Trans-Amazonian orogeny. The deformation of the Porongos sequence occurred during the Neoproterozoic Brasiliano orogeny and comprises four ductile deformation phases (DB1–DB4), including two phases of isoclinal folding associated with shearing recorded in mylonitic layers, followed by closed NW-vergent folding and thrusting leading to formation of a thrust stack. Uplift of the basement and formation of late tectonic sedimentary basins occurred as a result of semi-ductile to brittle block faulting in a sinistral strike-slip regime. The Porongos sequence can be subdivided into a southeastern and a northwestern part. Trace element analyses as well as Sm–Nd and Rb–Sr geochemical data indicate partial melting and significant contamination by old continental crust for the metavolcanic rocks. The metavolcanic rocks show εNd(t=780 Ma) values of −20.64 and −21.72 (northwestern units) and −6.87 (southeastern sequence). The metasedimentary rocks were derived from late Palaeoproterozoic to Archaean sources, and the data indicate different sources for the northwestern and southeastern rock units of the Porongos sequence. εNd(t=780 Ma) are −6.25 and −6.85 in the southeastern units, with TDM model ages between 1734 and 1954 Ma, and vary between −14.72 and −17.96 in the northwestern parts, which have TDM model ages between 2346 and 2710 Ma. High 87Sr/86Sr(t) values between 0.7064 and 0.7286 confirm reworking of older crust. Isotopic signatures of the Porongos sequence do not show indications for a significant contribution from a Neoproterozoic juvenile source. A passive margin or continental rift environment is suggested for the tectonic setting of the Porongos belt, which is compatible with both deposition of shallow marine to deep marine sediments and stretching of continental crust leading to volcanism which is characterized by significant contamination by old continental crust.


2020 ◽  
Author(s):  
Ingo Grevemeyer ◽  
Cesar Ranero ◽  
Nevio Zitellini ◽  
Valenit Sallares ◽  
Manel Prada

<p>The Tyrrhenian Sea in the central Mediterranean Sea was form by Neogene slab roll-back of the retreating Ionian slab about 6 to 2 Myr ago. Yet, little is known about the structure of its southern margin off Sicily as well as back-arc extension and spreading in the southern Tyrrhenian Sea to the north of Sicily. The Sicilian margin is generally classified as a passive margin bounding a young back-arc basin. However, focal mechanisms from regional earthquakes suggest that the margins suffers presently from compressional tectonics. New seismic refraction and wide-angle data were collected along seismic profile WAS4 during the CHIANTI survey of the Spanish research vessel Sarmiento de Gamboa in 2015. The profile runs from the centre of the Tyrrhenian Sea – the Vavilov Basin – across the margin of Sicily, approaching the Gulf of Castellammare to the northwest of Sicily. Reanalyzed multi-channel seismic data supports compressional tectonics across a small basin paralleling the coastline of Sicily, revealing recent inversion of the Tyrrhenian Basin. Offshore of Sicily WAS4 indicates a roughly 120-140 km wide domain showing seismic P-wave velocities characteristic for continental crust (Vp ~4-6.7 km/s) and a base of crust defined by a wide-angle Moho reflection. Continental crust reaches a maximum thickness of 22 km to the north of the Gulf of Castellammare and is thinning to ~9 km to the north of the Ustica Ridge. The compressional belt occurs in continental crust to the south of Ustica Ridge. In the Vavilov Basin, a lithosphere was sample where seismic P-wave velocity increases from approx. 3-4 km/s to 7.5 km/s. This velocity depth-distribution clearly shows profound similarities to serpentinized mantle and hence un-roofed mantle. Thus, seismic constrains support results from Ocean Drilling Program (ODP) hole 651A, which sample serpentinized peridotites in the Vavilov Basin. The transition between serpentinized mantle and continental crust is rather abrupt. Thus, within a ~10 km wide transitional domain, continental crust with a thickness of~ 9 km is juxtaposed against un-roofed mantle. All available data from the Tyrrhenian Sea support wide-spread mantle exhumation in the Vavilov Basin. Therefore, the Tyrrhenian Sea provides a rather different structure when compared to marginal basins in the Western Pacific and hence may not have supported a mid-ocean ridge-type spreading system opening the basin.</p>


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 557
Author(s):  
Byung-Choon Lee ◽  
Weon-Seo Kee ◽  
Uk-Hwan Byun ◽  
Sung-Won Kim

In this study, petrological, structural, geochemical, and geochronological analyses of the Statherian alkali feldspar granite and porphyritic alkali feldspar granite in the southwestern part of the Korean Peninsula were conducted to examine petrogenesis of the granitoids and their tectonic setting. Zircon U-Pb dating revealed that the two granites formed around 1.71 Ga and 1.70–1.68 Ga, respectively. The results of the geochemical analyses showed that both of the granites have a high content of K2O, Nb, Ta, and Y, as well as high FeOt/MgO and Ga/Al ratios. Both granites have alkali-calcic characteristics with a ferroan composition, indicating an A-type affinity. Zircon Lu-Hf isotopic compositions yielded negative εHf(t) values (−3.5 to −10.6), indicating a derivation from ancient crustal materials. Both granite types underwent ductile deformation and exhibited a dextral sense of shear with a minor extension component. Based on field relationships and zircon U-Pb dating, it was considered that the deformation event postdated the emplacement of the alkali feldspar granite and terminated soon after the emplacement of the porphyritic alkali feldspar granite in an extensional setting. These data indicated that there were extension-related magmatic activities accompanying ductile deformation in the southwestern part of the Korean Peninsula during 1.71–1.68 Ga. The Statherian extension-related events are well correlated with those in the midwestern part of the Korean and eastern parts of the North China Craton.


2020 ◽  
pp. 1-16
Author(s):  
Jian-Hui Liu ◽  
Fu-Lai Liu ◽  
Zheng-Jiang Ding ◽  
Hong Yang ◽  
Ping-Hua Liu ◽  
...  

Abstract The Wulian complex is located on the northern margin of the Sulu orogenic belt, and was formed by collision between the North China Craton (NCC) to the north and South China Craton (SCC) to the south. It consists of the metasedimentary Wulian Group, gneissic granite and meta-diorite. The U–Pb analyses for the detrital zircons from the Wulian Group exhibit one predominant age population of 2600–2400 Ma with a peak at c. 2.5 Ga and several secondary age populations of > 3000, 3000–2800, 2800–2600, 2200–2000, 1900–1800, 1500–1300 and 1250–950 Ma; some metamorphic zircons have metamorphic ages of c. 2.7, 2.55–2.45, 2.1–2.0 and 1.95–1.80 Ga, which are consistent with magmatic-metamorphic events in the SCC. Additionally, the Wulian Group was intruded by the gneissic granite and meta-diorite at c. 0.76 Ga, attributed to Neoproterozoic syn-rifting bimodal magmatic activity in the SCC and derived from partial melting of Archaean continental crust and depleted mantle, respectively. The Wulian Group therefore has tectonic affinity to the SCC and was mainly sourced from the SCC. The detrital zircons have positive and negative ϵHf(t) values, indicating that their source rocks were derived from reworking of both ancient and juvenile crustal rocks. The major early Precambrian crustal growth took place during c. 3.4–2.5 Ga with a dominant peak at 2.96 Ga and several secondary peaks at 3.27, 2.74 and 2.52 Ga. The two oldest zircons with ages of 3307 and 3347 Ma record the recycling of ancient continental crust (> 3.35 Ga) and crustal growth prior to c. 3.95 Ga in the SCC.


1969 ◽  
Vol 30 (1-2) ◽  
pp. 50-56 ◽  
Author(s):  
B.E. Fryxell ◽  
E.A. Aitken

2012 ◽  
Vol 312 (1) ◽  
pp. 88-96 ◽  
Author(s):  
Zhe Zhou ◽  
Rongjuan Cong ◽  
Yiyong He ◽  
Manjiri Paradkar ◽  
Mehmet Demirors ◽  
...  

Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 354
Author(s):  
Anatoly M. Sazonov ◽  
Aleksei E. Romanovsky ◽  
Igor F. Gertner ◽  
Elena A. Zvyagina ◽  
Tatyana S. Krasnova ◽  
...  

The gold and platinum-group elements (PGE) mineralization of the Guli and Kresty intrusions was formed in the process of polyphase magmatism of the central type during the Permian and Triassic age. It is suggested that native osmium and iridium crystal nuclei were formed in the mantle at earlier high-temperature events of magma generation of the mantle substratum in the interval of 765–545 Ma and were brought by meimechite melts to the area of development of magmatic bodies. The pulsating magmatism of the later phases assisted in particle enlargement. Native gold was crystallized at a temperature of 415–200 °C at the hydrothermal-metasomatic stages of the meimechite, melilite, foidolite and carbonatite magmatism. The association of minerals of precious metals with oily, resinous and asphaltene bitumen testifies to the genetic relation of the mineralization to carbonaceous metasomatism. Identifying the carbonaceous gold and platinoid ore formation associated genetically with the parental formation of ultramafic, alkaline rocks and carbonatites is suggested.


Sign in / Sign up

Export Citation Format

Share Document