scholarly journals Can the models keep up with the data? Possibilities of soil and soil surface assessment techniques in the context of process based soil erosion models – A Review

2021 ◽  
Author(s):  
Lea Epple ◽  
Andreas Kaiser ◽  
Marcus Schindewolf ◽  
Anette Eltner

Abstract. Climate change, accompanied by intensified extreme weather events, results in changes in intensity, frequency and magnitude of soil erosion. These unclear future developments make adaption and improvement of soil erosion modelling approaches all the more important. Hypothesizing that models cannot keep up with the data, this review gives an overview of 44 process based soil erosion models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques. We found valuable tools in areas, as remote sensing, tracing or machine learning, to gain temporal and spatial distributed high resolution parameterization and process descriptions which could lead to a more holistic modelling approach. Most process based models are so far not capable to implement cross-scale erosional processes or profit from the available resolution on a temporal and spatial scale. We conclude that models need further development regarding their process understanding, adaptability in respect to scale as well as their parameterization and calibration. The challenge is the development of models which are able to simulate soil erosion processes as close to reality as possible, as user-friendly as possible and as complex as it needs to be. 

2021 ◽  
Author(s):  
Lea Epple ◽  
Andreas Kaiser ◽  
Marcus Schindewolf ◽  
Anette Eltner

<p>Soil erosion as a major environmental challenge, plays a central role in land degradation. Accurate erosion rates assessment and information on erosion, deposition and on occurring processes are important to support soil protection and recovery strategies.</p><p>Due to the complexity, variability and discontinuity of erosional processes, model approaches to predict soil erosion are non-transferable to different temporal and spatial scales. Present process-based models are only valid for the particular observation scale which they were parameterized and validated for. In reality processes occur (e.g. spontaneous rill initiation) which are only to some extent reproducible, resulting in an incomplete process description. While model parameterization in the past was limited by the availability and resolution of data, constant development of data assessment technologies help overcome these confines. Time and cost in collecting data decreases, computing power is constantly expended and both the temporal and spatial resolution offer new possibilities on new scales.</p><p>Addressing the issue ‘data overhaul models’ we present a unique experimental setup, including flow velocity, erosion and deposition measurements at nested temporal and spatial scales, acquired using high resolution photogrammetric data (RGB and thermal) and structure from motion techniques. At the micro plot scale (3 m<sup>2</sup>), we perform rainfall simulations, monitored with up to eleven cameras. Using time lapse intervals of 10-20 seconds processes of pool formation and aggregate breakdown are observed. At the hillslope scale (60 m<sup>2</sup>), we installed a permanent setup – three rigs at three slope positions at four meter height, each equipped with five synchronized RGB cameras, a RGB video-camera and a low cost thermal camera. To capture changes in soil surface during rainfall events, time lapse images are triggered by a low-cost rain gauge. Soil surface changes at the small catchment scale (4 ha) are measured by taking UAV-images before and after rainfall events. These observations are used as parameterization, calibration and validation for modelled soil surface changes and erosion fluxes, using Erosion3D and FullSWOF.</p><p>The continuous development and improvement of soil erosion assessment techniques leads to spatially and temporally highly resolved information on different scales. Eventually the adjustment of the erosion models can enable a cross-scale description and validation of scale-dependent processes, offering new perspectives on both interconnectivity of sediment transport and the relationship between event frequency and magnitude.</p>


Author(s):  
R. J. Rickson ◽  
◽  
E. Dowdeswell Downey ◽  
G. Alegbeleye ◽  
S. E. Cooper ◽  
...  

Soil erodibility is the susceptibility of soil to the erosive forces of rainsplash, runoff and wind. It is a significant factor in determining present and future soil erosion rates. Focusing on soil erosion by water, this chapter shows that erodibility is determined by static and dynamic soil properties that control a range of sub-processes affecting soil erosion, but there is no standardised test procedure, making comparison of erodibility assessment techniques and their results challenging. Most researchers agree that aggregate stability is the best indicator of soil erodibility. Selection of techniques to measure aggregate stability need to consider the type of disruptive forces and breakdown processes to which field aggregates are subjected. New indices must incorporate spatial and temporal variabilities in erodibility; the different erosion processes operating; the impact of climate change; and the role of soil biology. New analytical techniques such as computer aided tomography show promise in considering soil erodibility as a dynamic continuum operating over 3 dimensions.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 5
Author(s):  
Marx L. N. Silva ◽  
Bernardo M. Cândido ◽  
John N. Quinton ◽  
Michael R. James

Water erosion affects all types of soils around the world at different intensities. However, in the tropics, water-based processes are the most important of the erosion processes and have received much attention in the last decades. Understanding and quantifying the processes involved in each type of water erosion (sheet, rill and gully erosion) is key to developing and managing soil conservation and erosion mitigation strategies. This study aims to investigate the efficiency of unmanned aerial vehicle (UAV) structure-from-motion (SfM) photogrammetry for soil erosion assessment, as well as to address some gaps in our understanding of the evolution of erosive processes. For the first time, we used a UAV-SfM technique to evaluate the relative contribution of different types of erosion (sheet, rill and gully sidewall) in gully development. This was possible due to the millimetric level of precision of the point clouds produced, which allowed us to evaluate the contribution of laminar erosion as a new component to gullies studies. As a result, it was possible to quantify sediment volumes stored in the channels and lost from the gully system, as well as to determine the main sediment sources. The UAV-SfM proved to be effective for detailed gully monitoring, with the results suggesting that the main source of sediments in the gully was mass movement, followed by rills and sheet erosion. Our findings support the use of UAV-based photogrammetry as a sufficiently precise tool for detecting soil surface change, which can be used to assess water erosion in its various forms. In addition, UAV-SfM has proven to be a very useful technique for monitoring soil erosion over time, especially in hard-to-reach areas.


2020 ◽  
Author(s):  
Silvia Kohnová ◽  
Zuzana Németová

<p>At present, the occurrence of extreme precipitation events is becoming more and more frequent and therefore it is important to quantify their impact on the landscape and soil degradation processes. Until now a wide range of soil erosion models have been developed and many significant studies performed to evaluate soil erosion processes at local and regional level, but there are still many modeling principles that suffer from a range of problems. The general problem in soil erosion modelling lies in the validation and verification of the methodologies used. The validation of erosion models is a very complicated and complex process due to lack of suitable sites, financial demands and due to the high temporal and spatial variability. The paper points to validate the physically and event-based Erosion-3D model predominantly developed to calculate the amounts of soil loss, surface runoff, and depositions resulting from natural and design rainfall events. In the study two different erosion assessment methods were chosen in order to compare diverse evaluation approaches. Both water erosion assessment methods used have certain advantages and disadvantages, but nowadays the use of physically-based models, which are a younger generation of models, are regarded to be a more innovative and effective technique for the evaluation of complex runoff-erosion processes, deposition and transport processes. The significant contribution of physically-based models is seen in their more precise representation of the erosion and deposition processes, a more proper calculation of the erosion, deposition and sediment yields and the application of more complicated characteristics, including fluctuating soil conditions and surface properties in comparison with empirical models. The validation of the models was performed based on the continuous rainfall events for the period selected (2015, 2016 and 2017). The extreme rainfall events occurring during the period were chosen and their serious impact on the agricultural land was modeled. The modelled sediment data were compared with the measured sediment deposition data obtained by a bathymetry survey of the Svacenicky Creek polder. The polder is situated in the middle of the Myjava hill lands in the western part of Slovakia and the bathymetry measurement were conducted using a hydrographical survey using the EcoMapper Autonomous Underwater Vehicle (AUV) device. The results of the study include a comparison between the modelled and measured data and an assessment of the impact of the intensive rainfall events on the investigated territory.</p><p>Key words: intensive rainfall events, agricultural land, soil degradation processes, hydrological extremes, physically-based model</p>


Geografie ◽  
2012 ◽  
Vol 117 (2) ◽  
pp. 170-191 ◽  
Author(s):  
Barbora Vysloužilová ◽  
Zdeněk Kliment

Water erosion is considered to be the most important factor behind the degradation of agricultural land. Many methods of measuring soil erosion processes, using mathematical models, have been developed in recent years. The most widespread of these, USLE, and its modifications have been used as the basis for new erosion models. Two such models, USPED (Mitášová et al. 1996) and WaTEM/SEDEM (Van Rompaey et al. 2001; Van Oost et al. 2000; Verstraeten et al. 2002), have been utilized to study erosion and deposition processes in the experimental rural catchment of Černičí. River sediment transport is also calculated using the WaTEM/ SEDEM model. The results are discussed with results from USLE and a field survey. The article also presents brief instructions for implementing the models in a GIS environment.


2019 ◽  
Vol 9 (16) ◽  
pp. 3317 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
Jesús Barrena-González ◽  
Manuel Pulido-Fernández ◽  
Artemi Cerdá

Monitoring soil erosion processes and measuring soil and water yields allow supplying key information to achieve land degradation neutrality challenges. Vineyards are one of the most affected agricultural territories by soil erosion due to human and natural factors. However, the spatial variability of soil erosion, the number of sampling points, and plot size necessary to estimate accurate soil erosion rates remains unclear. In this research, we determine how many inter-rows should be surveyed to estimate the soil mobilization rates in the viticulture area of Tierra de Barros (Extremadura, SW Spain) using the Improved Stock Unearthing Method (ISUM). This method uses the graft union of the vines as a passive biomarker of the soil surface level changes since the time of plantation and inter-row measures. ISUM was applied to three inter-row and four rows of vines (5904 sampling points) in order to determine how many surfaces and transects must be surveyed as all the previous surveys were done with only one inter-row. The results showed average values of soil depletion reaching −11.4, −11.8, and −11.5 cm for the inter-rows 1, 2, and 3, respectively. The current soil surface level descended 11.6 cm in 20 years. The inter-rows 1, 2, and 3 with a total area of 302.4 m2 each one (2016 points) recorded 71.4, 70.8, and 74.0 Mg ha−1 yr−1, respectively. With the maximum number of sampling points (5904), 71.2 Mg ha−1 yr−1 were obtained. The spatial variability of the soil erosion was shown to be very small, with no statistically significant differences among inter-rows. This could be due to the effect of the soil profile homogenization as a consequence of the intense tillage. This research shows the potential predictability of ISUM in order to give an overall overview of the soil erosion process for vineyards that follow the same soil management system. We conclude that measuring one inter-row is enough to get an overview of soil erosion processes in vineyards when the vines are under the same intense tillage management and topographical conditions. Moreover, we demonstrated the high erosion rates in a vineyard within the viticultural region of the Tierra de Barros, which could be representative for similar vineyards with similar topographical conditions, soil properties, and a possible non-sustainable soil management system.


2012 ◽  
Vol 7 (No. 4) ◽  
pp. 159-165 ◽  
Author(s):  
M. Boroghani ◽  
F. Hayavi ◽  
H. Noor

Splash erosion is recognized as the first stage in a soil erosion process and results from the soil surface bombing by rain drops. At the moment when rain drops conflict with the soil surface, soil particles move and destruct the soil structure. Soil particles dispersed by rain drops and moved by runoff are two basic soil erosion processes. In this study, the effect of applying various amounts of polyacrylamide (PAM) (0, 0.2, 0.4 and 0.6 g/m<sup>2</sup>) on the quantity of splash erosion at three rainfall intensities of 65, 95 and 120 mm/h by using of FEL3 rainfall simulator was investigated in marly soil in a laboratory. Results indicated differences in the effects of various treatments with PAM at all rainfall intensities, such as 0.6 g/m<sup>2</sup> PAM had the maximum effect on the splash erosion control by reducing soil erosion by about 28.93%. But statistical results showed that the use of various amounts of PAM (0.2, 0.4 and 0.6 g/m<sup>2</sup>) for controlling splash erosion at various rain intensities to decrease splash erosion did not reveal a statistically significant difference. Therefore, the application of 0.2, 0.4 and 0.6 g/m<sup>2</sup> PAM reduced the splash erosion, however, there was no statistical difference among these application rates of PAM. Finally, the results of statistical analysis of different intensities showed that only at 120 mm/h there was a significant difference between PAM treatment and control treatment (0 g/m<sup>2</sup> PAM) in the splash erosion control. At this intensity, the treatment with 0.4 g/m<sup>2</sup> PAM produced a maximum effect on the splash erosion control with 40% in comparison with the control treatment.


2009 ◽  
Vol 9 (5) ◽  
pp. 1693-1702 ◽  
Author(s):  
N. Diodato ◽  
M. Fagnano ◽  
I. Alberico

Abstract. This study presents a revised and scale-adapted Foster-Meyer-Onstad model (Foster et al., 1977) for the transport of soil erosion sediments under scarce input data, with the acronym CliFEM (Climate Forcing and Erosion Modelling). This new idea was addressed to develop a monthly time scale invariant Net Erosion model (NER), with the aim to consider the different erosion processes operating at different time scales in the Sele River Basin (South Italy), during 1973–2007 period. The sediment delivery ratio approach was applied to obtain an indirect estimate of the gross erosion too. The examined period was affected by a changeable weather regime, where extreme events may have contributed to exacerbate soil losses, although only the 19% of eroded sediment was delivered at outlet of the basin. The long-term average soil erosion was very high (73 Mg ha−1 per year ± 58 Mg ha−1). The estimate of monthly erosion showed catastrophic soil losses during the soil tillage season (August–October), with consequent land degradation of the hilly areas of the Sele River Basin.


Sign in / Sign up

Export Citation Format

Share Document