scholarly journals Affectability of splash erosion by polyacrylamide application and rainfall intensity

2012 ◽  
Vol 7 (No. 4) ◽  
pp. 159-165 ◽  
Author(s):  
M. Boroghani ◽  
F. Hayavi ◽  
H. Noor

Splash erosion is recognized as the first stage in a soil erosion process and results from the soil surface bombing by rain drops. At the moment when rain drops conflict with the soil surface, soil particles move and destruct the soil structure. Soil particles dispersed by rain drops and moved by runoff are two basic soil erosion processes. In this study, the effect of applying various amounts of polyacrylamide (PAM) (0, 0.2, 0.4 and 0.6 g/m<sup>2</sup>) on the quantity of splash erosion at three rainfall intensities of 65, 95 and 120 mm/h by using of FEL3 rainfall simulator was investigated in marly soil in a laboratory. Results indicated differences in the effects of various treatments with PAM at all rainfall intensities, such as 0.6 g/m<sup>2</sup> PAM had the maximum effect on the splash erosion control by reducing soil erosion by about 28.93%. But statistical results showed that the use of various amounts of PAM (0.2, 0.4 and 0.6 g/m<sup>2</sup>) for controlling splash erosion at various rain intensities to decrease splash erosion did not reveal a statistically significant difference. Therefore, the application of 0.2, 0.4 and 0.6 g/m<sup>2</sup> PAM reduced the splash erosion, however, there was no statistical difference among these application rates of PAM. Finally, the results of statistical analysis of different intensities showed that only at 120 mm/h there was a significant difference between PAM treatment and control treatment (0 g/m<sup>2</sup> PAM) in the splash erosion control. At this intensity, the treatment with 0.4 g/m<sup>2</sup> PAM produced a maximum effect on the splash erosion control with 40% in comparison with the control treatment.

2019 ◽  
Vol 9 ◽  
Author(s):  
Somayeh Soltani-Gerdefaramarzi ◽  
Nafiseh Ghezelseflue ◽  
Mehdi Boroughani

Splash erosion is recognized as the first stage in soil erosion process and results from the bombing of the soil surface by rain drops. One of the soil erosion control methods is the use of chemical polymers. The purpose of this study was to investigate the effects of different rates of polyacrylamide - PAM (0, 2, 4 and 6 kg/ha) - on the rate of splash erosion at three rainfall intensities (60, 90 and 120 mm/h) and three rainfall durations (10, 20 and 30 minutes) in laboratory conditions using a FEL3 rainfall simulator and Morgan splash bowls on a marly soil with loam soil texture. In all three intensities, rainfall duration and PAM treatments, the reductions of erosion were significant at 99% level, while their interaction was not statistically significant. The results indicated that 2 kg/ha of PAM did not show any significant difference in splash erosion reduction for all the intensities and durations. Increasing the rate of PAM from 4 kg/ha to 6 kg/ha helped to reduce the splash erosion rate; however, there was not a significant difference between the rates of 4 and 6 kg/ha of PAM in the intensity of 90 and 120 mm/h. Most splash erosion reduction (54%) was obtained for the intensity of 60 mm/h and the duration of 10 min with 6 kg/ha of PAM.


2018 ◽  
Vol 10 (12) ◽  
pp. 4654
Author(s):  
Rafael Blanco Sepúlveda ◽  
Francisco Enríquez Narváez

Agricultural intensification in the mountains of Central America has increased soil vulnerability to erosion by water. This study was undertaken to analyse the erosion that affects the mixed cultivation of maize and beans at two stages of the crop development cycle (at 3 and 6 months after sowing) in southern Guatemala, together with the influence of the ground and crop canopy vegetal cover on soil erosion. The main aim of this analysis is to establish the soil erosion threshold enabling sustainable agriculture. The results obtained show that the soil surface was severely eroded, with mean values of area affected of 88.4% and 73.5% at 3 and 6 months, respectively. In the 3-month plots, the erosion bore scant relation to the factors analysed. Conversely, the area affected by soil erosion in the 6-month plots was significantly related to the degree of ground cover by weeds and litter, and the erosion threshold was located at 80% of vegetal cover. However, plots with this level of cover did not achieve effective erosion control, due to the low level of plant litter cover (15.7%) compared to that of weeds (75.5%). We conclude that this low content of vegetal residue in the soil, together with the tillage practices employed, explains the large surface area affected by erosion and the impossibility of establishing an erosion threshold.


2019 ◽  
Vol 12 (1) ◽  
pp. 157 ◽  
Author(s):  
David Zumr ◽  
Danilo Vítor Mützenberg ◽  
Martin Neumann ◽  
Jakub Jeřábek ◽  
Tomáš Laburda ◽  
...  

An experimental laboratory setup was developed and evaluated in order to investigate detachment of soil particles by raindrop splash impact. The soil under investigation was a silty loam Cambisol, which is typical for agricultural fields in Central Europe. The setup consisted of a rainfall simulator and soil samples packed into splash cups (a plastic cylinder with a surface area of 78.5 cm2) positioned in the center of sediment collectors with an outer diameter of 45 cm. A laboratory rainfall simulator was used to simulate rainfall with a prescribed intensity and kinetic energy. Photographs of the soil’s surface before and after the experiments were taken to create digital models of relief and to calculate changes in surface roughness and the rate of soil compaction. The corresponding amount of splashed soil ranged between 10 and 1500 g m−2 h−1. We observed a linear relationship between the rainfall kinetic energy and the amount of the detached soil particles. The threshold kinetic energy necessary to initiate the detachment process was 354 J m−2 h−1. No significant relationship between rainfall kinetic energy and splashed sediment particle-size distribution was observed. The splash erosion process exhibited high variability within each repetition, suggesting a sensitivity of the process to the actual soil surface microtopography.


Proceedings ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 5
Author(s):  
Marx L. N. Silva ◽  
Bernardo M. Cândido ◽  
John N. Quinton ◽  
Michael R. James

Water erosion affects all types of soils around the world at different intensities. However, in the tropics, water-based processes are the most important of the erosion processes and have received much attention in the last decades. Understanding and quantifying the processes involved in each type of water erosion (sheet, rill and gully erosion) is key to developing and managing soil conservation and erosion mitigation strategies. This study aims to investigate the efficiency of unmanned aerial vehicle (UAV) structure-from-motion (SfM) photogrammetry for soil erosion assessment, as well as to address some gaps in our understanding of the evolution of erosive processes. For the first time, we used a UAV-SfM technique to evaluate the relative contribution of different types of erosion (sheet, rill and gully sidewall) in gully development. This was possible due to the millimetric level of precision of the point clouds produced, which allowed us to evaluate the contribution of laminar erosion as a new component to gullies studies. As a result, it was possible to quantify sediment volumes stored in the channels and lost from the gully system, as well as to determine the main sediment sources. The UAV-SfM proved to be effective for detailed gully monitoring, with the results suggesting that the main source of sediments in the gully was mass movement, followed by rills and sheet erosion. Our findings support the use of UAV-based photogrammetry as a sufficiently precise tool for detecting soil surface change, which can be used to assess water erosion in its various forms. In addition, UAV-SfM has proven to be a very useful technique for monitoring soil erosion over time, especially in hard-to-reach areas.


2021 ◽  
Author(s):  
Lea Epple ◽  
Andreas Kaiser ◽  
Marcus Schindewolf ◽  
Anette Eltner

Abstract. Climate change, accompanied by intensified extreme weather events, results in changes in intensity, frequency and magnitude of soil erosion. These unclear future developments make adaption and improvement of soil erosion modelling approaches all the more important. Hypothesizing that models cannot keep up with the data, this review gives an overview of 44 process based soil erosion models, their strengths and weaknesses and discusses their potential for further development with respect to new and improved soil and soil erosion assessment techniques. We found valuable tools in areas, as remote sensing, tracing or machine learning, to gain temporal and spatial distributed high resolution parameterization and process descriptions which could lead to a more holistic modelling approach. Most process based models are so far not capable to implement cross-scale erosional processes or profit from the available resolution on a temporal and spatial scale. We conclude that models need further development regarding their process understanding, adaptability in respect to scale as well as their parameterization and calibration. The challenge is the development of models which are able to simulate soil erosion processes as close to reality as possible, as user-friendly as possible and as complex as it needs to be. 


2020 ◽  
Vol 66 (No. 9) ◽  
pp. 368-374
Author(s):  
Aidin Parsakhoo ◽  
Akbar Mazri ◽  
Mohsen Mostafa

The aim of this study was to determine the suitable conservation treatments to control water erosion from skid trails in ShastKalate forests. Two longitudinal slopes of 20-40% and &gt; 40% were considered as critical slopes for skid trails. Treatments of water diversion ruts, water diversion ruts filled with slash and stones were implemented on each slope. A rubber bar was installed at the end of the slope to convert runoff into collectors. Sampling was done during rainfall events in autumn and winter seasons. Findings indicated that the treatment of water diversion ruts filled with slash was better than the other treatments in the control of sediment and soil loss, especially in the slope class of 20–40%. In the slope class of &gt; 40%, there was not any significant difference between treatments in sediment and soil loss control, but generally water diversion ruts filled with slash and stones were better in soil erosion control than water diversion ruts. In both slope classes, the rainfall intensity of 0.11 mm·h<sup>–1</sup> (2.64 mm in 24 h) was the threshold of soil erosion on skid trails. The control of water erosion of soil on skid trails by the operation of water diversions is a suitable treatment for conserving skid trails.


2019 ◽  
Vol 9 (16) ◽  
pp. 3317 ◽  
Author(s):  
Jesús Rodrigo-Comino ◽  
Jesús Barrena-González ◽  
Manuel Pulido-Fernández ◽  
Artemi Cerdá

Monitoring soil erosion processes and measuring soil and water yields allow supplying key information to achieve land degradation neutrality challenges. Vineyards are one of the most affected agricultural territories by soil erosion due to human and natural factors. However, the spatial variability of soil erosion, the number of sampling points, and plot size necessary to estimate accurate soil erosion rates remains unclear. In this research, we determine how many inter-rows should be surveyed to estimate the soil mobilization rates in the viticulture area of Tierra de Barros (Extremadura, SW Spain) using the Improved Stock Unearthing Method (ISUM). This method uses the graft union of the vines as a passive biomarker of the soil surface level changes since the time of plantation and inter-row measures. ISUM was applied to three inter-row and four rows of vines (5904 sampling points) in order to determine how many surfaces and transects must be surveyed as all the previous surveys were done with only one inter-row. The results showed average values of soil depletion reaching −11.4, −11.8, and −11.5 cm for the inter-rows 1, 2, and 3, respectively. The current soil surface level descended 11.6 cm in 20 years. The inter-rows 1, 2, and 3 with a total area of 302.4 m2 each one (2016 points) recorded 71.4, 70.8, and 74.0 Mg ha−1 yr−1, respectively. With the maximum number of sampling points (5904), 71.2 Mg ha−1 yr−1 were obtained. The spatial variability of the soil erosion was shown to be very small, with no statistically significant differences among inter-rows. This could be due to the effect of the soil profile homogenization as a consequence of the intense tillage. This research shows the potential predictability of ISUM in order to give an overall overview of the soil erosion process for vineyards that follow the same soil management system. We conclude that measuring one inter-row is enough to get an overview of soil erosion processes in vineyards when the vines are under the same intense tillage management and topographical conditions. Moreover, we demonstrated the high erosion rates in a vineyard within the viticultural region of the Tierra de Barros, which could be representative for similar vineyards with similar topographical conditions, soil properties, and a possible non-sustainable soil management system.


2017 ◽  
Vol 12 (No. 2) ◽  
pp. 106-116 ◽  
Author(s):  
V. Brant ◽  
M. Kroulík ◽  
J. Pivec ◽  
P. Zábranský ◽  
J. Hakl ◽  
...  

Soil under maize cropping is among the most endangered by erosion. The effect of conservation tillage management on values of splash erosion when using shallow strip tillage before sowing maize was evaluated in the Central Bohemian region (Czech Republic) during the period 2010–2012. The following types of tillage management using conventional technology and shallow tillage were evaluated: ploughed plots with mulch formed by weed biomass (PL<sub>W</sub>), ploughed plots with mulch from perennial ryegrass plants (PL<sub>PR</sub>), ploughed plots without mulch (PL) and shallow tillage (ST) where the mulch was formed by cereals straw. Furthermore, values of the splash erosion, plants and plant residues coverage ratio of soil by image analysis and the stability of soil aggregates were monitored during the whole experiment. The average value of splash erosion (MSR) was higher by 18.7% in the variant of PL<sub>W</sub>, lower by 35.9% in PL<sub>PR</sub>, and lower by 39.5% in ST, than in the control treatment PL (MSR value for PL = 100%) for the whole evaluated period (2010–2012). The average values of the soil surface plant coverage ratio in the plots with mulch ranged from 1.5 to 43.0% at the beginning of the vegetation period, and from 4.9 to 85.5% in the second half of the vegetation period. A positive correlation was observed between the average values of the stability of soil aggregates and the plant coverage ratio of the soil surface in 2010 and 2011.


2020 ◽  
Author(s):  
Roman Výleta ◽  
Viera Rattayová ◽  
Kamila Hlavčová ◽  
Michaela Danáčová ◽  
Andrej Škrinár ◽  
...  

&lt;p&gt;The aim of the study was an integrated application of methods for the identification and complex assessment of ecosystem responses to abiotic stress factors as extreme runoff, muddy floods and soil erosion processes.&amp;#160; The protection of land with flysch geological structures with regard to and the problems caused by extreme runoff are a very important task in water management. The unsuitable management of land and irresponsible land use causes the formation of flash floods on watersheds and results in accelerated soil erosion. The decreasing soil quality and excessive sedimentation of eroded material in the water structures, which are components of flood protection structures, are a consequence of accelerated soil erosion. Research on and the design of measures were realized on five small watersheds in the cadastral area of the village of Vrbovce, which is situated in western Slovakia, on the edge of the flysch zone of the White Carpathians. Flash floods regularly recur in the village of Vrbovce, and extreme runoff causes the formation of rill erosion on the arable land. The soil erosion was modelled by the Universal Soil Loss Equation and the topographic factor was calculated by the Usle2D program. The results of the calculations show that 96.19 % of the agricultural land is endangered by accelerated soil erosion, with the values of the average annual soil loss greater than the limit for the tolerance of soil erosion. We calculated the direct runoff for five selected watersheds of the Teplica river tributaries with the CN-SCS method. The flooded areas in the village were modelled by the 2D hydrodynamic model MIKE21. A set of measures, i.e., polders, an infiltration trench and agrotechnical measures on the arable land, was designed outside the built-up areas of the village of Vrbovce for the reduction of the extreme runoff and accelerated soil erosion. Measures for the Teplica river revitalisation in the village were proposed. From the estimation of effectiveness of the measures proposed follows that we were able to reduce the amount of the soil erosion to values permissible for the norm by the proposed measures.&lt;/p&gt;&lt;p&gt;Key words: soil erosion, flash floods, flood protection, erosion control and river revitalisation practices&lt;/p&gt;


2021 ◽  
Author(s):  
Minerva García-Carmona ◽  
Victoria Arcenegui ◽  
Fuensanta García-Orenes ◽  
Jorge Mataix-Solera

&lt;p&gt;After wildfires in Mediterranean forests, mosses have been described as faster colonizers in early successional stages when soil surface is more vulnerable and exposed to rainfall events. Soil erosion mitigation is an ecosystem service of high relevance provided by moss-dominated biocrusts, but information about additional functional roles of early post-fire colonization of mosses is still limited. In August 2018, a wildfire in &amp;#8220;Sierra de Beneixama&amp;#8221; (E Spain) affecting a total of 862 ha was followed by salvage logging management that triggered rill formation and soil erosion processes. Six months after the fire and subsequent management disturbances, the presence of mosses covering the soil reached 30%, appearing where no soil water repellency was detected. The aim of the study was to assess the short-term effects of mosses on the nutrients content and the stability of soils underlying the crust (2.5 cm depth), as well as the soil microorganisms and functions they deliver as key elements in soil recovery. Our results showed a strong decrease in the available phosphorous content in soils under the crust, suggesting consumption of this element released from the fire to moss development. In the same way, a slight decrease in soil organic carbon and nitrogen content was detected in soils beneath the biocrust. The labile fraction of organic carbon released by the fire may provide the substrate for heterotrophic soil microbes living beneath the biocrust, but while a beginning recovery of microbial biomass under mosses was observed, no higher microbial activity was detected six months after the fire. No greater differences in the microbial functionality, measured by enzymatic activities involved in carbon, nitrogen, and phosphorus cycles, were observed in soils associated with the crust. However, the response of the microbial parameters was mainly influenced by the nitrogen and phosphorous content of soils, highly released in post-fire environments. The lower developmental stage of the biocrust and the short-time since the disturbance might be an important factor in the functional recovery of the microbial community associated. Since wildfires are predicted to increase in frequency and severity due to climate change, monitoring biocrust impact on ecological functions recovery is essential to understand ecosystem resistance and resilience to future disturbances.&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;This work was supported by funding by the &amp;#8220;POSTFIRE_CARE&amp;#8221; project of the Spanish Research Agency (AIE) and the European Union through European Funding for Regional Development (FEDER) [Ref.: CGL2016-75178-C2-1-R], and the Spanish Ministry of Economy and Competitiveness [grant FPI-MINECO BES-2017-081283 supporting M.G-C].&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document