Modelling of impacts of erosion processes on agricultural landscapes due to intensive rainfall events

Author(s):  
Silvia Kohnová ◽  
Zuzana Németová

<p>At present, the occurrence of extreme precipitation events is becoming more and more frequent and therefore it is important to quantify their impact on the landscape and soil degradation processes. Until now a wide range of soil erosion models have been developed and many significant studies performed to evaluate soil erosion processes at local and regional level, but there are still many modeling principles that suffer from a range of problems. The general problem in soil erosion modelling lies in the validation and verification of the methodologies used. The validation of erosion models is a very complicated and complex process due to lack of suitable sites, financial demands and due to the high temporal and spatial variability. The paper points to validate the physically and event-based Erosion-3D model predominantly developed to calculate the amounts of soil loss, surface runoff, and depositions resulting from natural and design rainfall events. In the study two different erosion assessment methods were chosen in order to compare diverse evaluation approaches. Both water erosion assessment methods used have certain advantages and disadvantages, but nowadays the use of physically-based models, which are a younger generation of models, are regarded to be a more innovative and effective technique for the evaluation of complex runoff-erosion processes, deposition and transport processes. The significant contribution of physically-based models is seen in their more precise representation of the erosion and deposition processes, a more proper calculation of the erosion, deposition and sediment yields and the application of more complicated characteristics, including fluctuating soil conditions and surface properties in comparison with empirical models. The validation of the models was performed based on the continuous rainfall events for the period selected (2015, 2016 and 2017). The extreme rainfall events occurring during the period were chosen and their serious impact on the agricultural land was modeled. The modelled sediment data were compared with the measured sediment deposition data obtained by a bathymetry survey of the Svacenicky Creek polder. The polder is situated in the middle of the Myjava hill lands in the western part of Slovakia and the bathymetry measurement were conducted using a hydrographical survey using the EcoMapper Autonomous Underwater Vehicle (AUV) device. The results of the study include a comparison between the modelled and measured data and an assessment of the impact of the intensive rainfall events on the investigated territory.</p><p>Key words: intensive rainfall events, agricultural land, soil degradation processes, hydrological extremes, physically-based model</p>

Geografie ◽  
2012 ◽  
Vol 117 (2) ◽  
pp. 170-191 ◽  
Author(s):  
Barbora Vysloužilová ◽  
Zdeněk Kliment

Water erosion is considered to be the most important factor behind the degradation of agricultural land. Many methods of measuring soil erosion processes, using mathematical models, have been developed in recent years. The most widespread of these, USLE, and its modifications have been used as the basis for new erosion models. Two such models, USPED (Mitášová et al. 1996) and WaTEM/SEDEM (Van Rompaey et al. 2001; Van Oost et al. 2000; Verstraeten et al. 2002), have been utilized to study erosion and deposition processes in the experimental rural catchment of Černičí. River sediment transport is also calculated using the WaTEM/ SEDEM model. The results are discussed with results from USLE and a field survey. The article also presents brief instructions for implementing the models in a GIS environment.


2021 ◽  
Author(s):  
Ijasini John Tekwa ◽  
Abubakar Musa Kundiri

Soil erosion is a severe degradation phenomena that has since received huge attention among earth scientists in the developed worlds, and same efforts are now extending to Africa and other parts of underdeveloped worlds. This chapter focuses on collation, analyzing and appraising of soil ero¬sion studies around Mubi region, Northeast Nigeria, where the Mandara mountain ranges is notably responsible for spurring soil erosion. This chapter reviewed reports on the: (a) Mubi regional soil properties, erosion processes and principles of their occurrence, (b) soil erosion predictions using empirical and physically-based models by researchers, and, (c) economicimplications and managements of soil erosion in the region. This chapter reveals that classical and rill/ephemeral gully (EG) erosion features received more research attention than surface erosion such as splash and sheet. No information was reported on effects of landslides/slumping noticeable along rivers/stream banks around the region. The few economic analysis reported for soil nutrient and sediments entrained by concentrated flow channels were very high and intolerable to the predominantly peasant farmers in the region. It is hoped that the considerable volumes of erosion researches and recommendations assembled in this chapter shall be carefully implemented by prospective farmers, organizations, and residents in the Mubi region.


Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3517
Author(s):  
Boglárka Keller ◽  
Csaba Centeri ◽  
Judit Alexandra Szabó ◽  
Zoltán Szalai ◽  
Gergely Jakab

Climate change induces more extreme precipitation events, which increase the amount of soil loss. There are continuous requests from the decision-makers in the European Union to provide data on soil loss; the question is, which ones should we use? The paper presents the results of USLE (Universal Soil Loss Equation), RUSLE (Revised USLE), USLE-M (USLE-Modified) and EPIC (Erosion-Productivity Impact Calculator) modelling, based on rainfall simulations performed in the Koppány Valley, Hungary. Soil losses were measured during low-, moderate- and high-intensity rainfalls on cultivated soils formed on loess. The soil erodibility values were calculated by the equations of the applied soil erosion models and ranged from 0.0028 to 0.0087 t ha h ha−1 MJ−1 mm−1 for the USLE-related models. EPIC produced larger values. The coefficient of determination resulted in an acceptable correlation between the measured and calculated values only in the case of USLE-M. Based on other statistical indicators (e.g., NSEI, RMSE, PBIAS and relative error), RUSLE, USLE and USLE-M resulted in the best performance. Overall, regardless of being non-physically based models, USLE-type models seem to produce accurate soil erodibility values, thus modelling outputs.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 673
Author(s):  
Dario Gioia ◽  
Antonio Minervino Amodio ◽  
Agata Maggio ◽  
Canio Alfieri Sabia

Soil erosion is one of the major natural risk factors for developing high-value crops and an accurate estimation of spatial distribution and rates of soil degradation can be crucial to prevent crop degradation. In this paper, we use comparisons between high-resolution DEMs and soil erosion models to uncover the short-term landscape evolution of hazelnut crop yields, which are affected by incipient processes of rill development. Maps of rill initiation and evolution were extracted from the analysis of UAV-based multitemporal DEMs and the application of soil erosion models. A comparison between such a short-term analysis and historical orthophotos was carried out. Such a comparison shows how the USPED model predicts, very reliably, where linear erosion occurred. In fact, a reliable overlay between the linear erosive forms predicted by the USPED model and those captured by the UAV images can be observed. Furthermore, land use changes from 1974 to 2020 are characterized by a transition from abandoned areas (1974) to areas with high-value cultivation (2020), which has a strong impact on the spatial distribution of erosion processes and landslide occurrence. Such data represent a key tool for both the investigation of the spatial distribution of hot-spots of soil degradation and the identification of effective mitigation practices of soil conservation.


Author(s):  
Myroslav Voloshchuk

Based on generalization of literary sources, normative legal, stock materials and experimental data, the complex situation of soil degradation is highlighted. Different types and intensity of the manifestation of soil degradation, their distribution and characteristics are described. The threatening situation of manifestation of degradation processes in some regions of Ukraine is shown, among which soil erosion occupies the leading place. More than 4.5 million hectares are occupied by medium and strongly ground soils, including 68 thousand hectares completely lost their humus horizon. Particularly large areas of eroded soils are distributed on arable land in the Vinnytsia, Luhansk, Donetsk, Odesa, Chernivtsi and Ternopil regions, where the average annual ground wash is 24.5–27.8 t/ha with a tolerance of 2.5–3.7 t/ha. As a result of erosion processes from the total area of agricultural land, about 500 million tons of fertile soil layer is washed out on average annually, which contains about 24 million tons of humus, 0.96 million tons of nitrogen, 0.68 million tons of phosphorus and 9.4 million tons of potassium equivalent to 320–333 million tons of organic fertilizers, and ecological and economic losses due to erosion exceed 9 billion UAH. Flat soil was associated with linear erosion. The main indicators characterizing the degree of damage to land by linear erosion are the density of ravines, the distance and area between them, the slope, the properties of soils and rocks, the morphometric parameters of the ravines and their catchment areas. According to various estimates, the area of land affected by linear erosion in the country increases by 5–10 thousand ha annually. The effect of the ravines on the complete destruction of the land, deformation of the soil cover is highlighted. Information on various types of soil pollution by poison chemicals, industrial waste is given. According to the prediction of scientists in such a situation, 120–150 years on the planet can destroy the fertile soil layer. Key words: erosion, dehumidification, pollution, waterlogging, acidity, degraded land.


2013 ◽  
Vol 37 (6) ◽  
pp. 1431-1440 ◽  
Author(s):  
Tiago Santos Telles ◽  
Sonia Carmela Falci Dechen ◽  
Maria de Fátima Guimarães

The problem of soil erosion in Brazil has been a focus of agricultural scientific research since the 19th century. The aim of this study was to provide a historical overview of the institutional landmarks which gave rise to the first studies in soil erosion and established the foundations of agricultural research in Brazil. The 19th century and beginning of the 20th century saw the founding of a series of institutions in Brazil, such as Botanical Gardens, executive institutions, research institutes, experimental stations, educational institutions of agricultural sciences, as well as the creation and diversification of scientific journals. These entities, each in its own way, served to foster soil erosion research in Brazil. During the Imperial period (1808-1889), discussions focused on soil degradation and conserving the fertility of agricultural land. During the First Republic (1889-1930), with the founding of various educational institutions and consolidation of research on soil degradation conducted by the Agronomic Institute of Campinas in the State of São Paulo, studies focused on soil depletion, identification of the major factors causing soil erosion and the measures necessary to control it. During the New State period (1930-1945), many soil conservation practices were developed and disseminated to combat erosion and field trials were set up, mainly to measure soil and water losses induced by hydric erosion. During the Brazilian New Republic (1945-1964), experiments were conducted throughout Brazil, consolidating soil and water conservation as one of the main areas of Soil Science in Brazil. This was followed by scientific conferences on erosion and the institutionalization of post-graduate studies. During the Military Regime (1964-1985), many research and educational institutions were founded, experimental studies intensified, and coincidently, soil erosion reached alarming levels which led to the development of the no-tillage system.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2786 ◽  
Author(s):  
Safwan Mohammed ◽  
Hazem G. Abdo ◽  
Szilard Szabo ◽  
Quoc Bao Pham ◽  
Imre J. Holb ◽  
...  

Soils in the coastal region of Syria (CRoS) are one of the most fragile components of natural ecosystems. However, they are adversely affected by water erosion processes after extreme land cover modifications such as wildfires or intensive agricultural activities. The main goal of this research was to clarify the dynamic interaction between erosion processes and different ecosystem components (inclination, land cover/land use, and rainy storms) along with the vulnerable territory of the CRoS. Experiments were carried out in five different locations using a total of 15 erosion plots. Soil loss and runoff were quantified in each experimental plot, considering different inclinations and land uses (agricultural land (AG), burnt forest (BF), forest/control plot (F)). Observed runoff and soil loss varied greatly according to both inclination and land cover after 750 mm of rainfall (26 events). In the cultivated areas, the average soil water erosion ranged between 0.14 ± 0.07 and 0.74 ± 0.33 kg/m2; in the BF plots, mean soil erosion ranged between 0.03 ± 0.01 and 0.24 ± 0.10 kg/m2. The lowest amount of erosion was recorded in the F plots where the erosion ranged between 0.1 ± 0.001 and 0.07 ± 0.03 kg/m2. Interestingly, the General Linear Model revealed that all factors (i.e., inclination, rainfall and land use) had a significant (p < 0.001) effect on the soil loss. We concluded that human activities greatly influenced soil erosion rates, being higher in the AG lands, followed by BF and F. Therefore, the current study could be very useful to policymakers and planners for proposing immediate conservation or restoration plans in a less studied area which has been shown to be vulnerable to soil erosion processes.


Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 1 ◽  
Author(s):  
B. Yu ◽  
C. W. Rose

When physically based erosion models such as GUEST are used to determine soil erodibility parameters or to predict the rate of soil loss, data on runoff rates, as distinct from event runoff amount, are often needed. Data on runoff rates, however, are not widely available. This paper describes methods that can be used to overcome this lack of data on runoff rates. These methods require only rainfall rates and runoff amounts, which are usually available for sites set up primarily to test and validate the USLE technology. In addition, the paper summarises the data requirements for the erosion model GUEST and application procedures. In the accompanying paper, these methods are applied to 4 experimental sites in the ASIALAND Network.


F1000Research ◽  
2021 ◽  
Vol 9 ◽  
pp. 89
Author(s):  
Masato Oda ◽  
Yin Yin Nwe ◽  
Hide Omae

From the viewpoint of sustainability, annual soil erosion should be controlled below an erosion level. Palau is an island in the Micronesia region of the western Pacific Ocean. The island receives heavy rainfall and has steep slopes, so 80% of the land is categorized within the most fragile rank (T factor = 1) in soil erosion. We tested several methods of preventing soil erosion on the land, with a slope of 15.4° (13.4°–17.3°), cultivated the land, planted sweet potatoes, and compared the amount of soil erosion. Surprisingly, there was no erosion at all in all plots (including control plots), although 24 rainfall events occurred and the USLE equation predicted 32 tons per ha of soil erosion in the cropping period. For the parameters of the USLE equation used in this study, only the K factor was not measured (cited from a USDA report). Namely, the K factor estimated by soil texture was larger than the actual value. Measuring the K factor in the fields can expand Palau's sustainable agricultural land.


Sign in / Sign up

Export Citation Format

Share Document