scholarly journals Whole-soil warming decreases abundance and modifies the community structure of microorganisms in the subsoil but not in surface soil

SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 477-494
Author(s):  
Cyrill U. Zosso ◽  
Nicholas O. E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

Abstract. The microbial community composition in subsoils remains understudied, and it is largely unknown whether subsoil microorganisms show a similar response to global warming as microorganisms at the soil surface do. Since microorganisms are the key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in the predictions of future carbon cycling in the subsoil carbon pool (> 50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett Forest field warming experiment (California, USA) we investigated how +4 ∘C warming in the whole-soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). With depth, the microbial biomass decreased and the community composition changed. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of Actinobacteria increased in warmed subsoil, and Gram+ bacteria in subsoils adapted their cell membrane structure to warming-induced stress, as indicated by the ratio of anteiso to iso branched PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentrations in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more Actinobacteria might disproportionately enhance the degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources.

2021 ◽  
Author(s):  
Cyrill U. Zosso ◽  
Nicholas O. E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

Abstract. The microbial community composition in subsoils remains understudied and it is largely unknown whether subsoil microorganisms show a similar response to global warming as do microorganisms at the soil surface. Since microorganisms are key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in predictions of future carbon cycling in the subsoil carbon pool (>50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett forest field warming experiment (California, USA) we investigated how +4 °C warming the whole soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). Microbial biomass decreased and community composition changed with depth. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of actinobacteria increased in subsoil, and gram+ bacteria in subsoils adapted their cell-membrane structure to warming induced stress as indicated by the ratio of anteiso to iso PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming as compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentration in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more actinobacteria might disproportionately enhance degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Xueying Zhang ◽  
Xiaomei Chen ◽  
Muying Liu ◽  
Zhanying Xu ◽  
Hui Wei

Abstract Climate change and rapid urbanization have greatly impacted urban forest ecosystems and the carbon (C) cycle. To assess the effects of urbanization on forest soil C and soil microorganisms, six natural forests in a highly-urbanized region were selected as the research objects. Soil samples were collected to investigate the content and fractions of the soil organic carbon (SOC), as well as the soil microbial community composition. The results showed that the SOC content and fractions were substantially lower in the urban forests than in the suburban forests. Meanwhile, the total amount of phospholipid fatty acids (PLFAs) at suburban sites was twice more than that at urban sites, with shifts in microbial community structure. The potential differences in C inputs and nutrient limitation in urban forests may aggravate the low quantity and quality of SOC and consequently impact microbial community abundance and structure. Variation in microbial community structure was found to explain the loss of soil C pools by affecting the C inputs and promoting the decomposition of SOC. Therefore, the coupled changes in SOC and soil microorganisms induced by urbanization may adversely affect soil C sequestration in subtropical forests.


Soil Research ◽  
2014 ◽  
Vol 52 (6) ◽  
pp. 575 ◽  
Author(s):  
Jiasen Wu ◽  
Haiping Lin ◽  
Cifu Meng ◽  
Penkun Jiang ◽  
Weijun Fu

Chinese hickory (Carya cathayensis Sarg.) is a woody nut and oil tree from China. Intensive management including heavy application of chemical fertiliser and long-term application of herbicides has resulted in serious soil loss and degradation. This study aimed to test the hypothesis that intercropping in the soil under Chinese hickory stands may improve soil fertility and microbial community functional diversity. A field experiment consisting of four treatments (clean tillage; intercropping rape (Brassica rapa L.), ryegrass (Lolium perenne L.) or Chinese milk vetch (Astragalus sinicus L.) was conducted to study the effects of intercropping on soil organic carbon (SOC) structure and microbial community functional diversity under C. cathayensis stand, by means of 13C-nuclear magnetic resonance (NMR), and EcoPlates incubated at 25°C. After 4 years of treatment, intercropping increased available nitrogen (N), phosphorus and potassium in the soil by 25.1–54.2, 4.2–6.0 and 0–22.5 mg kg–1, respectively, relative to the clean tillage treatment; intercropping rape, ryegrass and Chinese milk vetch increased SOC, microbial biomass C (MBC), and water-soluble organic C (WOC) by 23.1–24.7, 138.6–159.7 and 56.2–69.5% (P < 0.05), respectively. The structure of SOC was also greatly changed by intercropping treatments. Intercropping increased carbonyl C by 29.9–36.9% (P < 0.05) and decreased alkyl C, O-alkyl C and aromatic C by 10.0–16.4, 18.9–20.9 and 10.5–16.6% (P < 0.05), respectively. Intercropping markedly improved microbial community functional diversity, which is characterised by increases in average well-colour development (AWCD), Shannon index and evenness index. Correlation analysis showed significant positive correlations among microbial biomass N, water-soluble organic N, SOC, WOC, MBC and AWCD (P < 0.05 or P < 0.01). The results demonstrate that sod cultivation is an effective soil management practice that improves soil quality and eliminates detrimental effects of clean tillage in Chinese hickory production.


2021 ◽  
Author(s):  
Cyrill Zosso ◽  
Nicholas O.E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

&lt;p&gt;Soils will warm in near synchrony with the air over the whole profiles following global climate change. It is largely unknown how subsoil (below 30 cm) microbial communities will respond to this warming and how plant-derived soil organic carbon (SOC) will be affected. Predictions how climate change will affect the large subsoil carbon pool (&gt;50 % of SOC is below 30 cm soil depth) remain uncertain.&lt;/p&gt;&lt;p&gt;At Blodgett forest (California, USA) a field warming experiment was set up in 2013 warming whole soil profiles to 100 cm soil depth by +4&amp;#176;C compared to control plots. We took samples in 2018, after 4.5 years of continuous warming and investigated how warming has affected the abundance and community structure of microoganisms (using phospholipid fatty acids, PLFAs), and plant litter (using cutin and suberin).&lt;/p&gt;&lt;p&gt;The warmed subsoil (below 30 cm) contained significantly less microbial biomass (28%) compared to control plots, whereas the topsoil remained unchanged. Additionally below 50 cm, the microbial community was different in warmed as compared to control plots. Actinobacteria were relatively more abundant and Gram+ bacteria adapted their cell-membrane structure to warming. The decrease in microbial abundance might be related to lower SOC concentrations in warmed compared to control subsoils. In contrast to smaller SOC concentrations and less fine root mass in the warmed plots, the concentrations of the plant polymers suberin and cutin did not change. Overall our results demonstrate that already four seasons of simulated whole-soil warming caused distinct depth-specific responses of soil biogeochemistry: warming altered the subsoil microbial community, but not concentrations of plant-derived soil organic carbon.&lt;/p&gt;


2017 ◽  
Vol 53 (4) ◽  
pp. 445-456 ◽  
Author(s):  
Axel Don ◽  
Isabelle H. Böhme ◽  
Anja B. Dohrmann ◽  
Christopher Poeplau ◽  
Christoph C. Tebbe

Sign in / Sign up

Export Citation Format

Share Document