scholarly journals Whole-soil warming alters microbial community, but not concentrations of plant-derived soil organic carbon in subsoil

Author(s):  
Cyrill Zosso ◽  
Nicholas O.E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

<p>Soils will warm in near synchrony with the air over the whole profiles following global climate change. It is largely unknown how subsoil (below 30 cm) microbial communities will respond to this warming and how plant-derived soil organic carbon (SOC) will be affected. Predictions how climate change will affect the large subsoil carbon pool (>50 % of SOC is below 30 cm soil depth) remain uncertain.</p><p>At Blodgett forest (California, USA) a field warming experiment was set up in 2013 warming whole soil profiles to 100 cm soil depth by +4°C compared to control plots. We took samples in 2018, after 4.5 years of continuous warming and investigated how warming has affected the abundance and community structure of microoganisms (using phospholipid fatty acids, PLFAs), and plant litter (using cutin and suberin).</p><p>The warmed subsoil (below 30 cm) contained significantly less microbial biomass (28%) compared to control plots, whereas the topsoil remained unchanged. Additionally below 50 cm, the microbial community was different in warmed as compared to control plots. Actinobacteria were relatively more abundant and Gram+ bacteria adapted their cell-membrane structure to warming. The decrease in microbial abundance might be related to lower SOC concentrations in warmed compared to control subsoils. In contrast to smaller SOC concentrations and less fine root mass in the warmed plots, the concentrations of the plant polymers suberin and cutin did not change. Overall our results demonstrate that already four seasons of simulated whole-soil warming caused distinct depth-specific responses of soil biogeochemistry: warming altered the subsoil microbial community, but not concentrations of plant-derived soil organic carbon.</p>

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Lilu Kumari Magar ◽  
Gandhiv Kafle ◽  
Pradeep Aryal

This paper reports the findings of a research study conducted in three tropical agroforestry systems in the Makawanpur district of Nepal, to quantify the spatial and vertical distribution of soil organic carbon in 30 cm soil profile depth in agrisilviculture, home garden, and silvopasture. The three agroforestry systems represent tropical agroforests of Nepal. It was found that the soil had 24.91 t/ha soil organic carbon in 30 cm soil profile in 2018, with 2.1% soil organic matter concentration in average. Bulk density was found increasing with an increase in soil depth. The soil organic carbon was not found significantly different across different agroforestry systems. Looking into the values of stocks of soil organic carbon, it is concluded that the tropical agroforests have played a role in global climate change mitigation by storing considerable amounts of soil organic carbon and the storage capacity can further be increased. Involvement of farmers in the management of tropical agroforests cannot be ignored in the process of climate change mitigation.


2019 ◽  
Vol 11 (20) ◽  
pp. 5790
Author(s):  
Junju Zhou ◽  
Dongxiang Xue ◽  
Li Lei ◽  
Lanying Wang ◽  
Guoshuang Zhong ◽  
...  

Soil, as the largest organic carbon pool of terrestrial ecosystem, plays a significant role in regulating the global carbon cycle, atmospheric carbon dioxide (CO2) levels, and global climate change. It is of great significance to scientifically understand the change rule and influence mechanism of soil organic carbon (SOC) to further understand the "source–sink" transformation of SOC and its influence on climate change. In this paper, the spatiotemporal distribution characteristics and influencing mechanism of SOC were analyzed by means of field investigation and laboratory analysis and the measured data in the Eastern Qilian Mountains. The results showed that the average SOC content of 0–50 cm was 35.74 ± 4.15 g/kg and the range of coefficients of variation (CV) between 48.84% and 75.84%, which suggested that the SOC content exhibited moderate heterogeneity at each soil layer of the Eastern Qilian Mountains. In four land cover types, the SOC content of forestland was the highest, followed by alpine meadow, grassland, and wilderness, which presented surface enrichment, and there was a decreasing trend with the soil depth. From the perspective of seasonal dynamics, there was a uniform pattern of SOC content in different land cover types, shown to be the highest in winter, followed by autumn, spring, and summer, and with the biggest difference between winter and summer appearing in the surface layer. At the same time, our study suggested that the SOC content of different land cover types was closely related to aboveground biomass and negatively related to both the mean monthly temperature and the mean monthly precipitation. Therefore, the distribution and variation of SOC was the result of a combination of climate, vegetation, and other factors.


Author(s):  
John Tennyson Afele ◽  
Evans Dawoe ◽  
Akwasi Adutwum Abunyewa ◽  
Victor Afari-Sefa ◽  
Richard Asare

Shade grown cocoa systems have been credited with stocking high quantities of carbon and therefore possess the potential to mitigate climate change and help achieve targets of the United Nations Collaborative Program on Reduced Emissions from Deforestation and Forest Degradation (REDD+). This study quantifies and compares carbon stored as well as estimated cocoa yields in two shade management types (i.e., shaded and full sun) across three agroecological zones: Dry Semi-Deciduous Fire Zone (DSFZ), Moist Evergreen Zone (MEZ) and Upland Evergreen Moist Zone (UEMZ) in Ghana.  Results show that Soil organic carbon (SOC) stored decreased with increasing soil depth across all agroecological zones. Cocoa farms with shade trees stored 6 times more soil carbon (35.90±1.56 Mg C ha-1) compared to the full sun systems (5.98±1.56 Mg C ha-1). Carbon stocks in the DSFZ and the MEZ were 61.73±1.02 Mg C/ha and 67.46±1.02 Mg C ha-1 respectively whiles the UEMZ recorded 85.10 Mg C ha-1. Across agroecological zones, pod count in the UEMZ and the MEZ were similar but varied from that of the DSFZ, which recorded the least. Wilting of pods and cherrelles, was minimal and similar in the UMEZ and the MEZ but was significantly higher in the DSFZ. It is recommended that farmers should be encouraged through strong policies to adopt the integration of shade trees in the production of cocoa in Ghana to mitigate the effects of climate change.


SOIL ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 477-494
Author(s):  
Cyrill U. Zosso ◽  
Nicholas O. E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

Abstract. The microbial community composition in subsoils remains understudied, and it is largely unknown whether subsoil microorganisms show a similar response to global warming as microorganisms at the soil surface do. Since microorganisms are the key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in the predictions of future carbon cycling in the subsoil carbon pool (> 50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett Forest field warming experiment (California, USA) we investigated how +4 ∘C warming in the whole-soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). With depth, the microbial biomass decreased and the community composition changed. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of Actinobacteria increased in warmed subsoil, and Gram+ bacteria in subsoils adapted their cell membrane structure to warming-induced stress, as indicated by the ratio of anteiso to iso branched PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentrations in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more Actinobacteria might disproportionately enhance the degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources.


AoB Plants ◽  
2019 ◽  
Vol 11 (6) ◽  
Author(s):  
Rui Guo ◽  
Ji Zhou ◽  
Xiuli Zhong ◽  
Fengxue Gu ◽  
Qi Liu ◽  
...  

Abstract Leymus chinensis grassland in Northeast China provides a natural laboratory for the investigation of climate change. The response of L. chinensis to experimental warming can provide insight into its regeneration behaviour and the likely composition of future communities under warmer climate. We used MSR-2420 infrared radiators to elevate temperature and examined soil organic carbon and nitrogen and soil total phosphorus and determined the growth and physiology of L. chinensis in response to manipulations of ambient condition and warming. Results showed that compared with the control, L. chinensis subjected to warming treatment showed increased soil organic carbon and soil total nitrogen, but no significant difference was observed in soil total phosphorus. Climate warming increased shoot biomass, ecosystem respiration, and ecosystem water-use efficiency and reduced net ecosystem CO2 exchange and evapotranspiration. This result implies that warming could rapidly alter carbon fluxes. The effect of warming treatment significantly increased the contents of glucose and fructose and significantly inhibited sucrose synthesis. However, the TCA cycle was enhanced when citric and malic acid contents further accumulated. The results implied that L. chinensis probably enhanced its warming adaption mechanism mainly through increasing glycolysis consumption when it was exposed to elevated temperature. These results provide an understanding of the fundamental evidence explaining the primary metabolism of L. chinensis in response to warming and suggest the future impact of the terrestrial carbon-cycle feedback on global climate change.


2021 ◽  
Author(s):  
Cyrill U. Zosso ◽  
Nicholas O. E. Ofiti ◽  
Jennifer L. Soong ◽  
Emily F. Solly ◽  
Margaret S. Torn ◽  
...  

Abstract. The microbial community composition in subsoils remains understudied and it is largely unknown whether subsoil microorganisms show a similar response to global warming as do microorganisms at the soil surface. Since microorganisms are key drivers of soil organic carbon decomposition, this knowledge gap causes uncertainty in predictions of future carbon cycling in the subsoil carbon pool (>50 % of the soil organic carbon stocks are below 30 cm soil depth). In the Blodgett forest field warming experiment (California, USA) we investigated how +4 °C warming the whole soil profile to 100 cm soil depth for 4.5 years has affected the abundance and community structure of microorganisms. We used proxies for bulk microbial biomass carbon (MBC) and functional microbial groups based on lipid biomarkers, such as phospholipid fatty acids (PLFAs) and branched glycerol dialkyl glycerol tetraethers (brGDGTs). Microbial biomass decreased and community composition changed with depth. Our results show that the concentration of PLFAs decreased with warming in the subsoil (below 30 cm) by 28 % but was not affected in the topsoil. Phospholipid fatty acid concentrations changed in concert with soil organic carbon. The microbial community response to warming was depth dependent. The relative abundance of actinobacteria increased in subsoil, and gram+ bacteria in subsoils adapted their cell-membrane structure to warming induced stress as indicated by the ratio of anteiso to iso PLFAs. Our results show for the first time that subsoil microorganisms can be more affected by warming as compared to topsoil microorganisms. These microbial responses could be explained by the observed decrease in subsoil organic carbon concentration in the warmed plots. A decrease in microbial abundance in warmed subsoils might reduce the magnitude of the respiration response over time. The shift in the subsoil microbial community towards more actinobacteria might disproportionately enhance degradation of previously stable subsoil carbon, as this group is able to metabolize complex carbon sources.


2010 ◽  
Vol 73 (1) ◽  
pp. 70-76 ◽  
Author(s):  
Yafeng Wang ◽  
Bojie Fu ◽  
Yihe Lü ◽  
Chengjun Song ◽  
Yong Luan

Soil organic carbon (SOC) is one of the key components for assessing soil quality. Meanwhile, the changes in the stocks SOC may have large potential impact on global climate. It is increasingly important to estimate the SOC stock precisely and to investigate its variability. In this study, Yangjuangou watershed was selected to investigate the SOC distribution under different land uses. We found that SOC concentration decreased with increasing soil depth under all land uses and was significantly different across the vertical soil profile (P < 0.01). However, considering effect of land use on SOC, it is only significant (P < 0.01) in the topsoil (0–5 cm) layer. This indicated that land use has a large effect on the stocks of SOC in the surface soil. The stratification ratio of SOC > 1.2 may mean that soil quality is improving. The order of the SOC density (0–30 cm) under different land uses is forestland > orchard land > grassland > immature forestland > terraced cropland. The SOC stock is found to be as large as 2.67 × 10 t (0–30 cm) in this watershed. Considering time effect of restoration, the slope cropland just abandoned is more efficient for SOC accumulation than trees planted in the semi-arid hilly loess area.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Rodrigo Antón ◽  
Francisco Javier Arricibita ◽  
Alberto Ruiz-Sagaseta ◽  
Alberto Enrique ◽  
Isabel de Soto ◽  
...  

Author(s):  
Ziwei Xiao ◽  
Xuehui Bai ◽  
Mingzhu Zhao ◽  
Kai Luo ◽  
Hua Zhou ◽  
...  

Abstract Shaded coffee systems can mitigate climate change by fixation of atmospheric carbon dioxide (CO2) in soil. Understanding soil organic carbon (SOC) storage and the factors influencing SOC in coffee plantations are necessary for the development of sound land management practices to prevent land degradation and minimize SOC losses. This study was conducted in the main coffee-growing regions of Yunnan; SOC concentrations and storage of shaded and unshaded coffee systems were assessed in the top 40 cm of soil. Relationships between SOC concentration and factors affecting SOC were analysed using multiple linear regression based on the forward and backward stepwise regression method. Factors analysed were soil bulk density (ρb), soil pH, total nitrogen of soil (N), mean annual temperature (MAT), mean annual moisture (MAM), mean annual precipitation (MAP) and elevations (E). Akaike's information criterion (AIC), coefficient of determination (R2), root mean square error (RMSE) and residual sum of squares (RSS) were used to describe the accuracy of multiple linear regression models. Results showed that mean SOC concentration and storage decreased significantly with depth under unshaded coffee systems. Mean SOC concentration and storage were higher in shaded than unshaded coffee systems at 20–40 cm depth. The correlations between SOC concentration and ρb, pH and N were significant. Evidence from the multiple linear regression model showed that soil bulk density (ρb), soil pH, total nitrogen of soil (N) and climatic variables had the greatest impact on soil carbon storage in the coffee system.


Sign in / Sign up

Export Citation Format

Share Document