scholarly journals Impact of gravels and organic matter on the thermal properties of grassland soils in southern France

2015 ◽  
Vol 2 (1) ◽  
pp. 737-765
Author(s):  
J.-C. Calvet ◽  
N. Fritz ◽  
C. Berne ◽  
B. Piguet ◽  
W. Maurel ◽  
...  

Abstract. Soil moisture is the main driver of temporal changes in values of the soil thermal conductivity. The latter is a key variable in land surface models (LSMs) used in hydrometeorology, for the simulation of the vertical profile of soil temperature in relation to soil moisture. Shortcomings in soil thermal conductivity models tend to limit the impact of improving the simulation of soil moisture in LSMs. Models of the thermal conductivity of soils are affected by uncertainties, especially in the representation of the impact of soil properties such as the volumetric fraction of quartz (q), soil organic matter, and gravels. As soil organic matter and gravels are often neglected in LSMs, the soil thermal conductivity models used in most LSMs represent the mineral fine earth, only. Moreover, there is no map of q and it is often assumed that this quantity is equal to the volumetric fraction of sand. In this study, q values are derived by reverse modelling from the continuous soil moisture and soil temperature sub-hourly observations of the Soil Moisture Observing System – Meteorological Automatic Network Integrated Application (SMOSMANIA) network at 21 grassland sites in southern France, from 2008 to 2015. The soil temperature observations are used to retrieve the soil thermal diffusivity (Dh) at a depth of 0.10 m in unfrozen conditions, solving the thermal diffusion equation. The soil moisture and Dh values are then used together with the measured soil properties to retrieve soil thermal conductivity (λ) values. For ten sites, the obtained λ value at saturation (λsat) cannot be retrieved or is lower than the value corresponding to a null value of q, probably in relation to a high density of grass roots at these sites or to the presence of stones. For the remaining eleven sites, q is negatively correlated with the volumetric fraction of solids other than sand. The impact of neglecting gravels and organic matter on λsat is assessed. It is shown that these factors have a major impact on λsat.

2012 ◽  
Vol 204-208 ◽  
pp. 650-653
Author(s):  
Jiang Li ◽  
Jun Ping Fu ◽  
Wu Gang Xie

System effectiveness and useful life of heat pump are directly affected by whether the design of ground heat exchanger is reasonable or not. The efficiency of heat exchanger has a close relationship with soil thermal conductivity coefficient and heat diffusivity, while soil moisture content affects soil thermal conductivity coefficient and soil temperature field. In this paper, we perform numerical simulation on CFD software. Then we study the soil temperature changes through field experiment in different soil moisture content on field experiment and finally obtained the relationships of the moisture content with the single U ground soil temperature field.


SOIL ◽  
2016 ◽  
Vol 2 (4) ◽  
pp. 615-629 ◽  
Author(s):  
Jean-Christophe Calvet ◽  
Noureddine Fritz ◽  
Christine Berne ◽  
Bruno Piguet ◽  
William Maurel ◽  
...  

Abstract. The quartz fraction in soils is a key parameter of soil thermal conductivity models. Because it is difficult to measure the quartz fraction in soils, this information is usually unavailable. This source of uncertainty impacts the simulation of sensible heat flux, evapotranspiration and land surface temperature in numerical simulations of the Earth system. Improving the estimation of soil quartz fraction is needed for practical applications in meteorology, hydrology and climate modeling. This paper investigates the use of long time series of routine ground observations made in weather stations to retrieve the soil quartz fraction. Profile soil temperature and water content were monitored at 21 weather stations in southern France. Soil thermal diffusivity was derived from the temperature profiles. Using observations of bulk density, soil texture, and fractions of gravel and soil organic matter, soil heat capacity and thermal conductivity were estimated. The quartz fraction was inversely estimated using an empirical geometric mean thermal conductivity model. Several pedotransfer functions for estimating quartz content from gravimetric or volumetric fractions of soil particles (e.g., sand) were analyzed. The soil volumetric fraction of quartz (fq) was systematically better correlated with soil characteristics than the gravimetric fraction of quartz. More than 60 % of the variance of fq could be explained using indicators based on the sand fraction. It was shown that soil organic matter and/or gravels may have a marked impact on thermal conductivity values depending on which predictor of fq is used. For the grassland soils examined in this study, the ratio of sand-to-soil organic matter fractions was the best predictor of fq, followed by the gravimetric fraction of sand. An error propagation analysis and a comparison with independent data from other tested models showed that the gravimetric fraction of sand is the best predictor of fq when a larger variety of soil types is considered.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Ruixia He ◽  
Ning Jia ◽  
Huijun Jin ◽  
Hongbo Wang ◽  
Xinyu Li

Thermal properties are important for featuring the water-heat transfer capacity of soil. They are also key to many processes in earth sciences, such as the land surface processes and ecological and geoenvironmental dynamics and their changes in permafrost regions. With loose and porous structures, the organic matter layer in soil strata substantially influences soil thermal conductivity. So far, thermal conductivity of mineral soils has been explored extensively and in depth, but there are only limited studies on that of organic soils. In this study, influences of soil temperature, soil moisture saturation (SMS), and soil organic matter (SOM) content on soil thermal conductivity were analyzed on the basis of laboratory experiments on the silt-organic soil mixtures of varied mixing ratios. Results show that soil thermal conductivity declines slowly with the lowering temperatures from 10 to 0°C; however, it increases and finally stabilizes when temperature further lowers from 0 to -10°C. It is important to note that thermal conductivity peaks in the temperature range of -2~0°C (silty and organic-poor soil) and -5~0°C (organic-rich soil), possibly due to phase changes of ice/water in warm permafrost. Under both thawed and frozen states, soil thermal conductivity is positively related with SMS. However, with rising SOM content, the growth rate of soil thermal conductivity with SMS slows gradually. Given the same SMS, soil thermal conductivity declines exponentially with increasing SOM content. Based on the experimental and theoretical analyses, a new empirical computational formula of soil thermal conductivity is established by taking into account of the SOM content, SMS, and soil temperature. The results may help better parameterize in simulating and predicting land surface processes and for optimizing frozen soil engineering designs and provide theoretical bases for exploring the dynamic mechanisms of environmental changes in cold regions under a changing climate.


Soil Systems ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 2
Author(s):  
Laurent Jeanneau ◽  
Pauline Buysse ◽  
Marie Denis ◽  
Gérard Gruau ◽  
Patrice Petitjean ◽  
...  

The biogeochemistry of soil organic matter (SOM) is driven by a combination of stabilization and destabilization mechanisms. Among the various ways in which SOM is lost, soil moisture controls the leaching of dissolved organic and inorganic carbon (DOC and DIC) and CO2 fluxes (FCO2). The aim of this study was to investigate the impact of naturally occurring water table dynamics on the couplings between these three types of C losses. The DIC and DOC concentrations in the soil solutions and the FCO2 values at the soil surface were collected fortnightly over a nine-month period at four sampling points located along two topographic transects characterized by different water table dynamics. The water table depth, soil temperature and water-filled pore space (WFPS) were monitored at each site. Linear and nonlinear regressions were used to explore the couplings between C losses, WFPS and soil temperature. The dynamics of the water table seem to drive DOC solubilization, diffusion, and export mechanisms in addition to microbial processes and the equilibrium between DIC and CO2. The main descriptors of this water table dynamic were the residence time, return time and number of oscillations of the water table. Considering both transects, FCO2 was positively correlated with DOC, which highlights the importance of substrate accessibility for SOM mineralization. This paper emphasizes the importance of the water table dynamic for the coupling between SOM carbon losses.


1996 ◽  
Vol 21 (1) ◽  
pp. 326-326
Author(s):  
Stanley R. Swier ◽  
Alan Rollins

Abstract The experimental design was an RCB, replicated 4X, plot size was 7 X 7 ft. All treatments were applied with a CO2 boom sprayer, 8004 nozzles, at 40 PSI, in 2 gal water per 10002. All plots were lightly preirrigated. Merit was applied 3 Jul and irrigated (0.1 in). The remaining treatments were applied 31 Jul to a mixed population of 3-6 instar larvae and were not immediately watered. Plots were rated 7 Aug using a soap flush and counting live larvae. Conditions at the time of treatment on 3 Jul were: air temperature, 86.4°F; wind, calm; sky, clear; soil temperature, 90.6°F; thatch depth, 0.25 inch; slope, 0%; soil texture, loamy sand, sand 80%, silt 13%, clay 7%; soil organic matter, 1.7%; soil moisture 8%; post treatment precipitation, light irrigation daily; mowing height 0.125 inch.


Geoderma ◽  
2021 ◽  
Vol 385 ◽  
pp. 114863
Author(s):  
Perry Taneja ◽  
Hitesh Kumar Vasava ◽  
Prasad Daggupati ◽  
Asim Biswas

2020 ◽  
Vol 1 (2) ◽  
pp. 171-179

Soil respiration is a major component of global carbon cycle. Therefore, it is crucial to understand the environmental controls on soil respiration for evaluating potential response of ecosystems to climate change. In a temperate deciduous forest (located in Northern-Hungary) we added or removed aboveground and belowground litter to determine total soil respiration. We investigated the relationship between total soil CO2 efflux, soil moisture, and soil temperature. Soil CO2 efflux was measured at each plot using soda-lime method. Temperature sensitivity of soil respiration (Q10) was monitored via measuring soil temperature on an hourly basis, while soil moisture was determined monthly. Soil respiration increased in control plots from the second year after implementing the treatment, but results showed fluctuations from one year to another. The effect of doubled litter was less significant than the effect of removal. Removed litter and root inputs caused substantial decrease in soil respiration. We found that temperature was more influential in the control of soil respiration than soil moisture. In plots with no litter Q10 varied in the largest interval. For treatment with doubled litter layer, temperature sensitivity of CO2 efflux did not change considerably. The effect of increasing soil temperature is more conspicuous to soil respiration in litter removal treatments since lack of litter causes greater irradiation. When exclusively leaf litter was considered, the effect of temperature on soil respiration was lower in treatments with added litter than with removed litter. Our results reveal that soil life is impacted by the absence of organic matter, rather than by an excess of organic matter. Results of CO2 emission from soils with different organic matter content can contribute to sustainable land use, considering the changed climatic factors caused by global climate change.


2020 ◽  
Vol 23 (3) ◽  
pp. 117-124
Author(s):  
Dušan Šrank ◽  
Vladimír Šimanský

The effort to achieve the sustainable farming system in arable soil led to the intensive search for a new solution but an inspiration can also be found in the application of traditional methods of soil fertility improvement as it is shown in numerous examples in history. Recently many scientific teams have focused their attention on the evaluation of biochar effects on soil properties and crop yields. Since there are a lot of knowledge gaps, especially in explanations how biochar can affect soil organic matter (SOM) and humus substances, we aimed this study at the solution of these questions. Therefore, the objective of the experiment was to evaluate the impact of two biochar substrates (B1 – biochar blended with sheep manure, and B2 – biochar blended with sheep manure and the residue from the biogas station) at two rates (10 and 20 t ha-1) applied alone or in combination with mineral fertilizers (Urea was applied in 2018, at rate 100 kg ha-1, and Urea at rate 100 kg ha-1 + AMOFOS NP 12-52 at 100 kg ha-1 were applied in 2019) on the quantity and quality of SOM and humus of sandy soil (Arenosol, Dolná Streda, Slovakia). The results showed that application of the biochar substrates together with mineral fertilizers (MF) had more pronounced effect on the organic matter mineralization in the sandy soil which resulted in low accumulation of soil organic carbon (Corg) and labile carbon compared to biochar substrates treatments without MF. The share of humic substances in Corg significantly decreased by 16, 50, 16 and 24% in B1 at 10 t ha-1, B1 at 20 t ha-1, B2 at 10 t ha-1 and B2 at 20 t ha-1 treatments, respectively, compared to the control. A similar tendency was observed for biochar substrates treatments + MF, compared to MF control. The carbon content of humic substances (CHS) was equal to 4.40 – 5.80 g kg-1 and the biochar substrates had statistically significant influence on CHS content. On average, there was a smaller decrease of CHS in B1 at rate 10 t ha-1 than at rate 20 t ha-1 and no effect of B2 compared to control. The carbon content of fulvic acid (CFA) was 9% higher in B1 at 10 t ha-1, and 20 t ha-1, 47% higher in B2 at 10 t ha-1 and 17% higher in B2 at 20 t ha-1 compared to control. As a result of biochar substrates + MF application, the reduction in CFA was observed. The results showed a decrease of CHA : CFA ratio with association to biochar substrates alone application compared to control on one hand, and a wider of CHA : CFA ratio in biochar substrates + MF treatments in comparison to MF control on the other hand. Humus stability was increased in biochar substrates alone treatments compared to control, on the other hand, compared to MF control, the application of biochar substrates + MF resulted in a lower humus stability.


Sign in / Sign up

Export Citation Format

Share Document